

SCDS173A-AUGUST 2004-REVISED MARCH 2005

FEATURES

- High-Bandwidth Data Path (up to 500 MHz ⁽¹⁾)
- Equivalent to IDTQS3VH251 Device
- 5-V Tolerant I/Os With Device Powered Up or Powered Down
- Low and Flat ON-State Resistance (r_{on}) Characteristics Over Operating Range (r_{on} = 4 Ω Typ)
- Rail-to-Rail Switching on Data I/O Ports
 0- to 5-V Switching With 3.3-V V_{CC}
 - 0- to 3.3-V Switching With 2.5-V V_{cc}
- Bidirectional Data Flow With Near-Zero
 Propagation Delay
- Low Input/Output Capacitance Minimizes Loading and Signal Distortion (C_{io(OFF)} = 3.5 pF Typ)
- Fast Switching Frequency (f_{OE} or f_S = 20 MHz Max)
- (1) For additional information regarding the performance characteristics of the CB3Q family, refer to the TI application report, *CBT-C, CB3T, and CB3Q Signal-Switch Families*, literature number SCDA008.

NC - No internal connection

- Data and Control Inputs Provide Undershoot Clamp Diodes
- Low Power Consumption (I_{cc} = 1 mA Typ)
- V_{cc} Operating Range From 2.3 V to 3.6 V
- Data I/Os Support 0- to 5-V Signaling Levels (0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V, 5 V)
- Control Inputs Can Be Driven by TTL or 5-V/3.3-V CMOS Outputs
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
- 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
- Supports Both Digital and Analog Applications: PCI Interface, Differential Signal Interface, Memory Interleaving, Bus Isolation, Low-Distortion Signal Gating

NC - No internal connection

DESCRIPTION/ORDERING INFORMATION

The SN74CB3Q3251 is a high-bandwidth FET bus switch utilizing a charge pump to elevate the gate voltage of the pass transistor, providing a low and flat ON-state resistance (r_{on}) . The low and flat ON-state resistance allows for minimal propagation delay and supports rail-to-rail switching on the data input/output (I/O) ports. The device also features low data I/O capacitance to minimize capacitive loading and signal distortion on the data bus. Specifically designed to support high-bandwidth applications, the SN74CB3Q3251 provides an optimized interface solution ideally suited for broadband communications, networking, and data-intensive computing systems.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCDS173A-AUGUST 2004-REVISED MARCH 2005

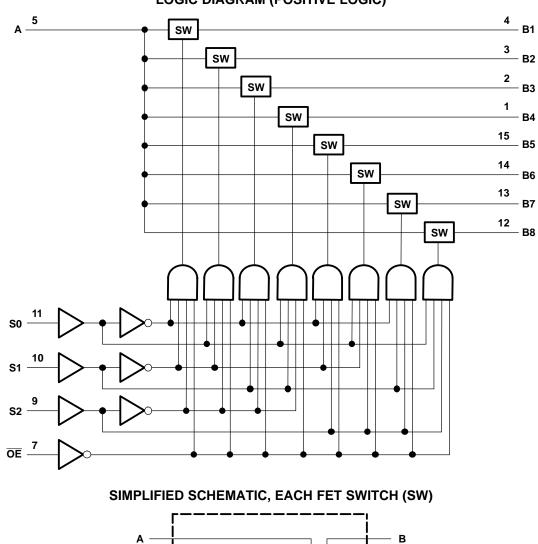
DESCRIPTION/ORDERING INFORMATION (CONTINUED)

The SN74CB3Q3251 is a 1-of-8 multiplexer/demultiplexer with a single output-enable (\overline{OE}) input. The select (S0, S1, S2) inputs control the data path of the multiplexer/demultiplexer. When \overline{OE} is low, the multiplexer/demultiplexer is enabled, and the A port is connected to the B port, allowing bidirectional data flow between ports. When \overline{OE} is high, the multiplexer/demultiplexer is disabled, and a high-impedance state exists between the A and B ports.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry prevents damaging current backflow through the device when it is powered down. The device has isolation during power off.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

T _A	PACKAGE	(1)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	QFN – RGY	Tape and reel	SN74CB3Q3251RGYR	BU251
	SSOP (QSOP) – DBQ	Tape and reel	SN74CB3Q3251DBQR	BU251
–40°C to 85°C		Tube	SN74CB3Q3251PW	DUDEA
	TSSOP – PW	Tape and reel	SN74CB3Q3251PWR	BU251
	TVSOP – DGV	Tape and reel	SN74CB3Q3251DGVR	BU251


ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

	INP	UTS		INPUT/OUTPUT	FUNCTION
ŌĒ	S2	S1	S0	Α	FUNCTION
L	L	L	L	B1	A port = B1 port
L	L	L	Н	B2	A port = B2 port
L	L	Н	L	B3	A port = B3 port
L	L	Н	Н	B4	A port = B4 port
L	Н	L	L	B5	A port = B5 port
L	Н	L	Н	B6	A port = B6 port
L	н	Н	L	B7	A port = B7 port
L	н	Н	Н	B8	A port = B8 port
Н	Х	Х	Х	Z	Disconnect

FUNCTION TABLE

SCDS173A-AUGUST 2004-REVISED MARCH 2005

LOGIC DIAGRAM (POSITIVE LOGIC)

EN(1) (1) EN is the internal enable signal applied to the switch.

Vcc

Charge Pump

SCDS173A-AUGUST 2004-REVISED MARCH 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
V _{IN}	Control input voltage range ⁽²⁾⁽³⁾		-0.5	7	V
V _{I/O}	Switch I/O voltage range ⁽²⁾⁽³⁾⁽⁴⁾		-0.5	7	V
I _{IK}	Control input clamp current	V _{IN} < 0		-50	mA
I _{I/OK}	I/O port clamp current	V _{I/O} < 0		-50	mA
I _{I/O}	ON-state switch current ⁽⁵⁾			±64	mA
	Continuous current through V_{CC} or GND			±100	mA
		DBQ package ⁽⁶⁾		90	
0	Deckage thermal impedance	DGV package ⁽⁶⁾		120	°C/W
θ_{JA}	Package thermal impedance	PW package ⁽⁶⁾		108	-C/W
		RGY package ⁽⁷⁾		39	
T _{stg}	Storage temperature range		-65	150	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings (1) only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltages are with respect to ground unless otherwise specified. (2)

(3)The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

 V_{I} and V_{O} are used to denote specific conditions for $V_{I/O}$. (4)

(5)

 I_{I} and I_{O} are used to denote specific conditions for $I_{I/O}$. The package thermal impedance is calculated in accordance with JESD 51-7. (6)

(7)The package thermal impedance is calculated in accordance with JESD 51-5.

Recommended Operating Conditions⁽¹⁾

		MIN	MAX	UNIT
V_{CC}	Supply voltage	2.3	3.6	V
V	High level control input voltage $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7	5.5	V
VIH	High-level control input voltage $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2	5.5	v
V	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	0	0.7	V
VIL	Low-level control input voltage $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	0	0.8	v
V _{I/O}	Data input/output voltage	0	5.5	V
T _A	Operating free-air temperature	-40	85	°C

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004. (1)

SCDS173A-AUGUST 2004-REVISED MARCH 2005

Electrical Characteristics⁽¹⁾

over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER		TEST CONDITIO	ONS	MIN TYP ⁽²⁾	MAX	UNIT
V_{IK} $V_{CC} = 3.6 V,$			I _I = -18 mA			-1.8	V
I _{IN}	Control inputs	V _{CC} = 3.6 V,	$V_{IN} = 0$ to 5.5 V			±1	μA
I _{OZ} ⁽³⁾		V _{CC} = 3.6 V,	$V_0 = 0$ to 5.5 V, $V_1 = 0$,	Switch OFF, V _{IN} = V _{CC} or GND		±1	μΑ
I _{off}		$V_{CC} = 0,$	$V_0 = 0$ to 5.5 V,	V ₁ = 0		1	μA
I _{CC}		V _{CC} = 3.6 V,	I _{I/O} = 0, Switch ON or OFF,	$V_{IN} = V_{CC}$ or GND	1	4	mA
$\Delta I_{CC}^{(4)}$	Control inputs	V _{CC} = 3.6 V,	One input at 3 V,	Other inputs at V_{CC} or GND		30	μA
I _{CCD} ⁽⁵⁾	Per control input	V _{CC} = 3.6 V,	A and B ports open,	Control input switching at 50% duty cycle	0.03	0.1	mA/ MHz
C _{in}	Control inputs	V _{CC} = 3.3 V,	V _{IN} = 5.5 V, 3.3 V, or	0	2.5	4.5	pF
C	A port	V _{CC} = 3.3 V,	Switch OFF, $V_{IN} = V_{CC}$ or GND,	$V_{I/O} = 5.5 V, 3.3 V, \text{ or } 0$	19.5	25	~
C _{io(OFF)}	B port	V _{CC} = 3.3 V,	Switch OFF, $V_{IN} = V_{CC}$ or GND,	$V_{I/O} = 5.5 V, 3.3 V, \text{ or } 0$	3.5	4.5	pF
C _{io(ON)}		V _{CC} = 3.3 V,	Switch ON, V _{IN} = V _{CC} or GND,	$V_{I/O}$ = 5.5 V, 3.3 V, or 0	15	19	pF
		V _{CC} = 2.3 V,	V ₁ = 0,	l _O = 30 mA	4	10	
r _{on} ⁽⁶⁾		TYP at $V_{CC} = 2.5 V$	V _I = 1.7 V,	I _O = -15 mA	4.5	11	0
on (°)		V - 2 V	V ₁ = 0,	I _O = 30 mA	3.5	8	Ω
		$V_{CC} = 3 V$	V _I = 2.4 V,	4	10		

(1)

 V_{IN} and I_{IN} refer to control inputs. $V_{I},\,V_{O},\,I_{I}$, and I_{O} refer to data pins. All typical values are at V_{CC} = 3.3 V (unless otherwise noted), T_{A} = 25°C. For I/O ports, the parameter I_{OZ} includes the input leakage current. (2)

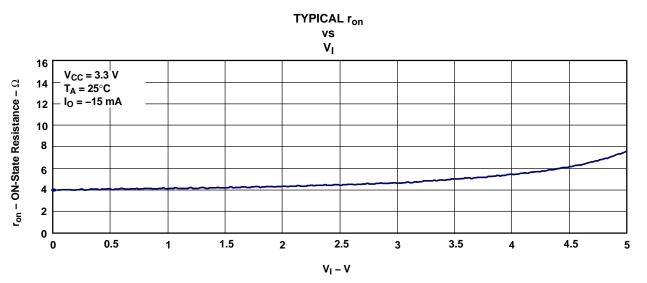
(3)

This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND. (4)

This parameter specifies the dynamic power-supply current associated with the operating frequency of a single control input (see (5) Figure 2).

(6) Measured by the voltage drop between the A and B terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

Switching Characteristics


over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

PARAMETER	FROM	TO (OUTPUT)	V _{CC} = ± 0.2	2.5 V 2 V	V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INPUT)	(001F01)	MIN	MAX	MIN	MAX	
f _{OE} or f _S ⁽¹⁾	OE or S	A or B		10		20	MHz
t _{pd} ⁽²⁾	A or B	B or A		0.12		0.18	ns
t _{pd(s)}	S	А	1.5	6.7	1.5	5.9	ns
	S	В	1.5	6.7	1.5	5.9	
t _{en}	OE	A or B	1.5	6.7	1.5	5.9	ns
	S	В	0.5	6.1	0.5	6.1	~~
t _{dis}	ŌĒ	A or B	0.5	6.1	0.5	6.1	ns

(1) Maximum switching frequency for control input (V_O > V_{CC}, V_I = 5 V, R_L \ge 1 MΩ, C_L = 0).

The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load (2) capacitance, when driven by an ideal voltage source (zero output impedance).

SCDS173A-AUGUST 2004-REVISED MARCH 2005

-ij

Texas

INSTRUMENTS www.ti.com

Figure 1. Typical r_{on} vs VI, V_{CC} = 3.3 V and I_O = –15 mA

TYPICAL I_{CC} vs CONTROL INPUT SWITCHING FREQUENCY

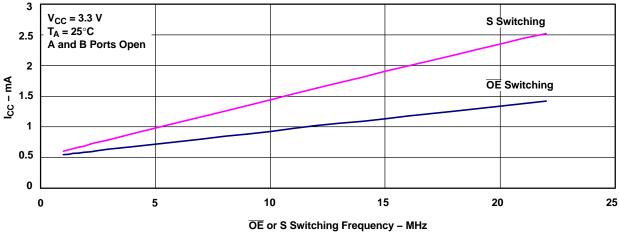
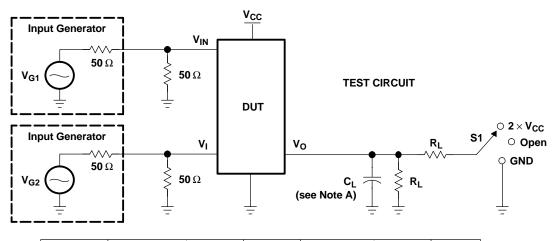



Figure 2. Typical I_{CC} vs \overline{OE} or S Switching Frequency, V_{CC} = 3.3 V

SCDS173A-AUGUST 2004-REVISED MARCH 2005

PARAMETER MEASUREMENT INFORMATION

TEST	V _{CC}	S1	RL	VI	CL	V_{Δ}
t _{pd(s)}	$\textbf{2.5 V} \pm \textbf{0.2 V}$	Open	500 Ω	V _{CC} or GND	30 pF	
	3.3 V ± 0.3 V	Open	500 Ω	V _{CC} or GND	50 pF	
t _{PLZ} /t _{PZL}	$\textbf{2.5 V} \pm \textbf{0.2 V}$	$2 \times V_{CC}$	500 Ω	GND	30 pF	0.15 V
*FL2'*F2L	3.3 V \pm 0.3 V	$2 \times V_{CC}$	500 Ω	GND	50 pF	0.3 V
t _{PHZ} /t _{PZH}	2.5 V \pm 0.2 V	GND	500 Ω	V _{CC}	30 pF	0.15 V
'PHZ''PZH	3.3 V \pm 0.3 V	GND	500 Ω	V _{CC}	50 pF	0.3 V

NOTES: A. C_{L} includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns. t_f \leq 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd(s)}. The tpd propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Test Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
		.,				(4)	(5)		、 <i>,</i>
SN74CB3Q3251DBQR	Active	Production	SSOP (DBQ) 16	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BU251
SN74CB3Q3251DGVR	Active	Production	TVSOP (DGV) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	BU251
SN74CB3Q3251PW	Obsolete	Production	TSSOP (PW) 16	-	-	Call TI	Call TI	-40 to 85	BU251
SN74CB3Q3251PWR	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	BU251
SN74CB3Q3251RGYR	Active	Production	VQFN (RGY) 16	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BZ51

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

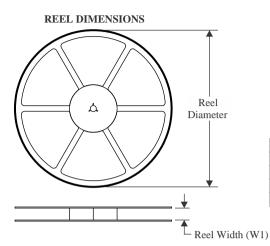
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

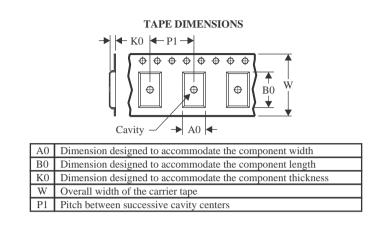
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

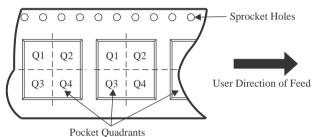
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

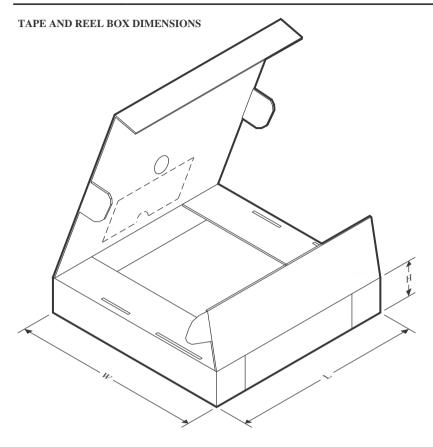


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	•	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74CB3Q3251DBQR	SSOP	DBQ	16	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
SN74CB3Q3251DGVR	TVSOP	DGV	16	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
SN74CB3Q3251PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74CB3Q3251RGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1

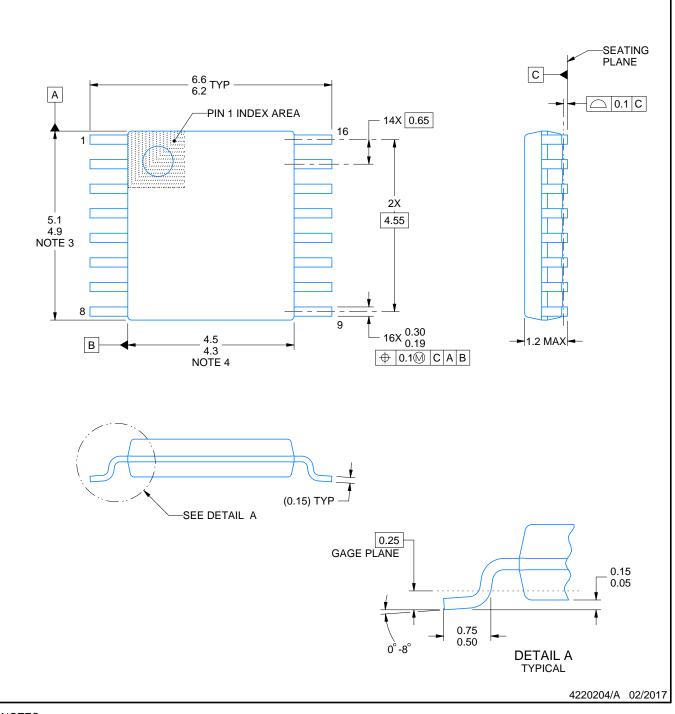
www.ti.com

PACKAGE MATERIALS INFORMATION

14-Dec-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74CB3Q3251DBQR	SSOP	DBQ	16	2500	353.0	353.0	32.0
SN74CB3Q3251DGVR	TVSOP	DGV	16	2000	367.0	367.0	35.0
SN74CB3Q3251PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
SN74CB3Q3251RGYR	VQFN	RGY	16	3000	367.0	367.0	35.0


PW0016A

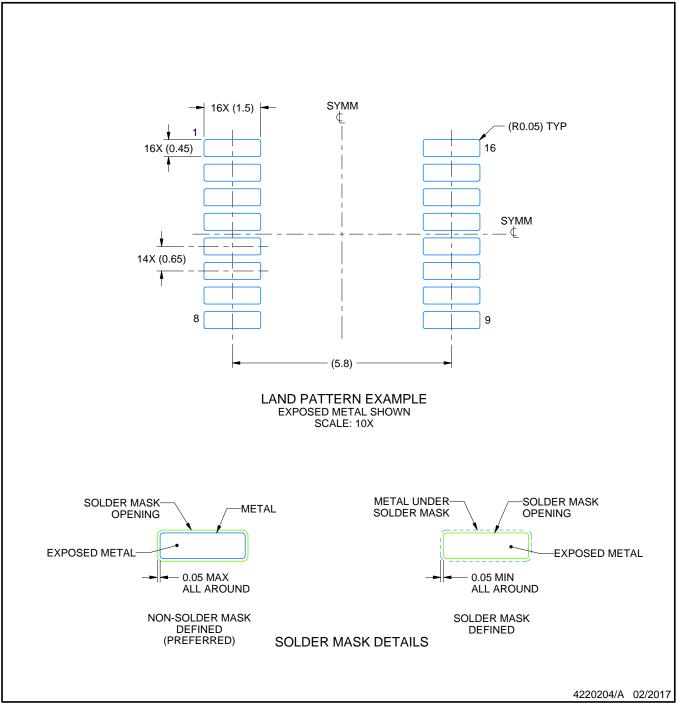
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

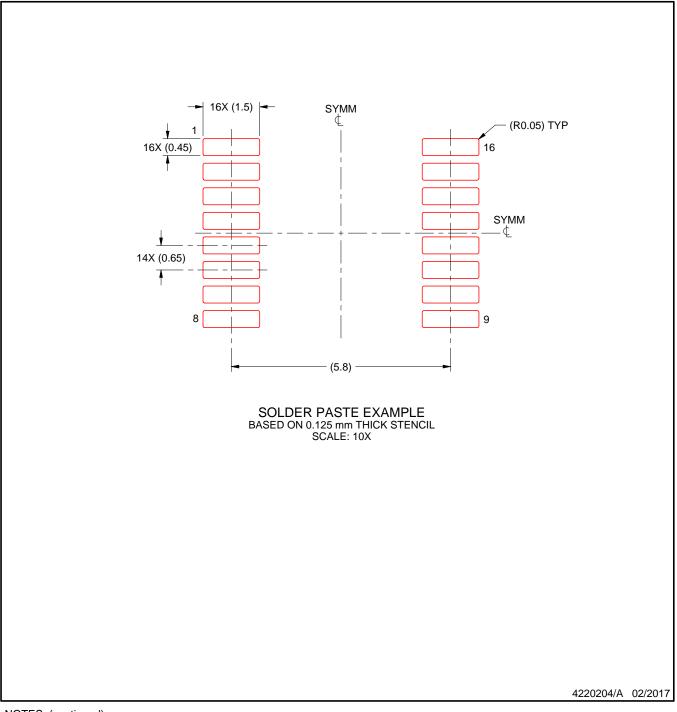
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

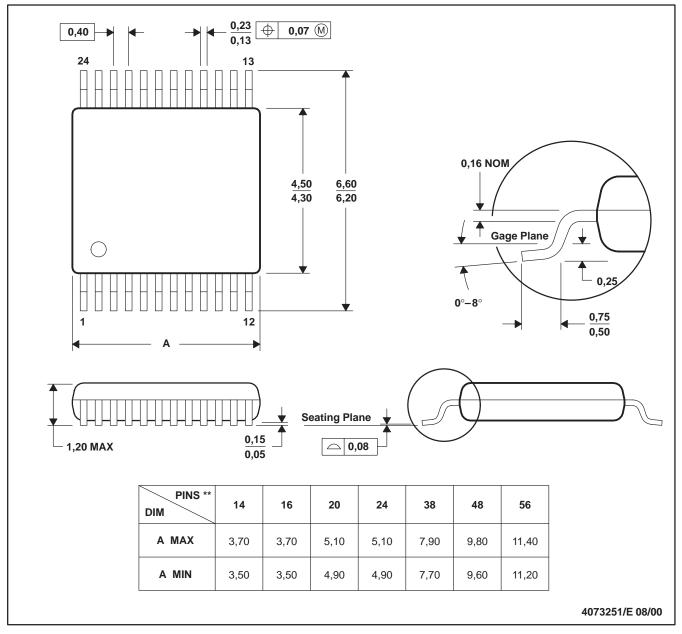
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

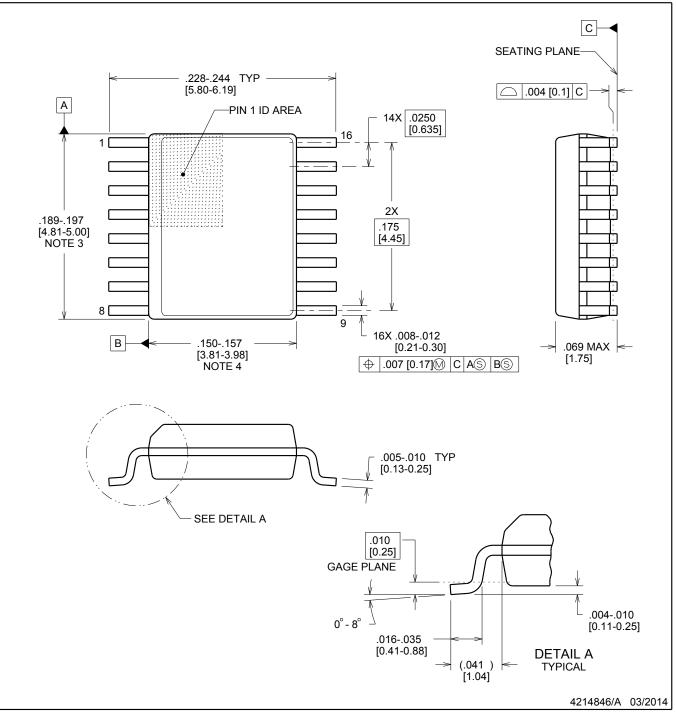
24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194


DBQ0016A

PACKAGE OUTLINE

SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side.
- This dimension does not include interlead flash.
 Reference JEDEC registration MO-137, variation AB.



DBQ0016A

EXAMPLE BOARD LAYOUT

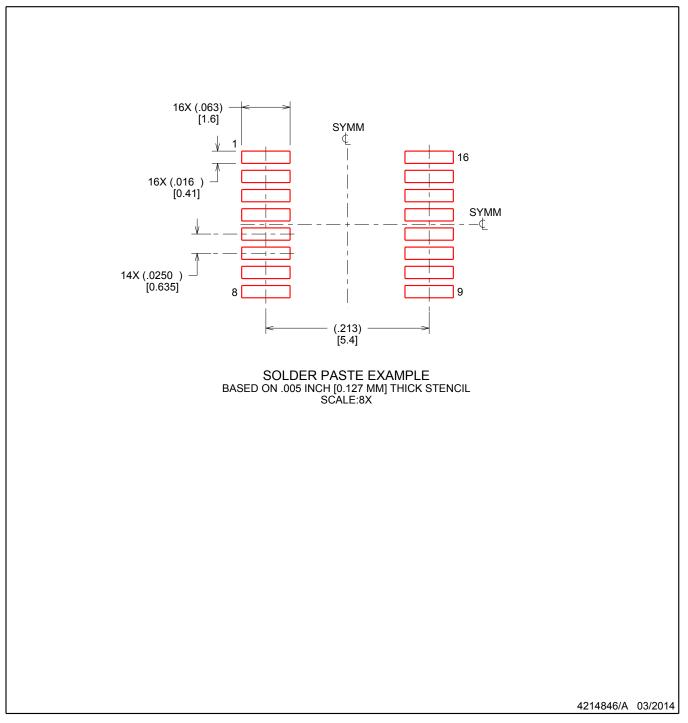
SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

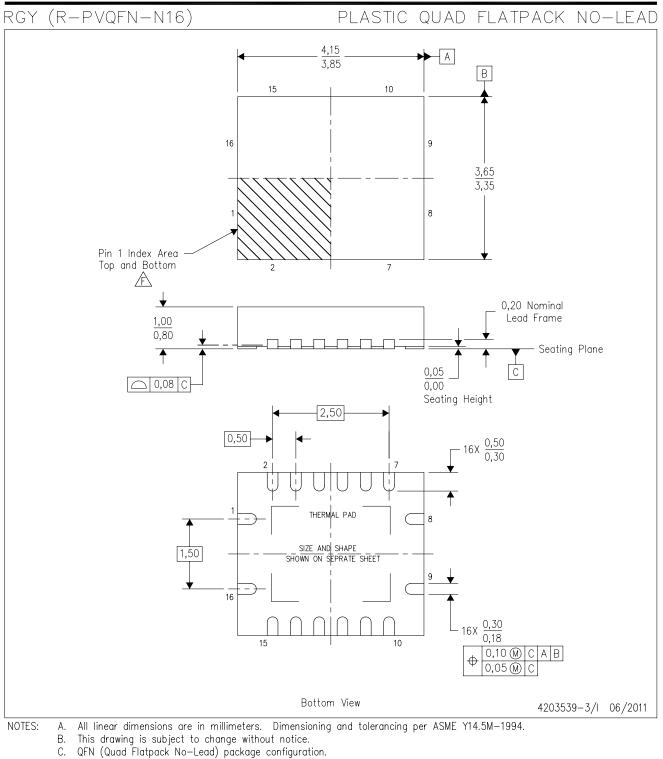


DBQ0016A

EXAMPLE STENCIL DESIGN

SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE


NOTES: (continued)

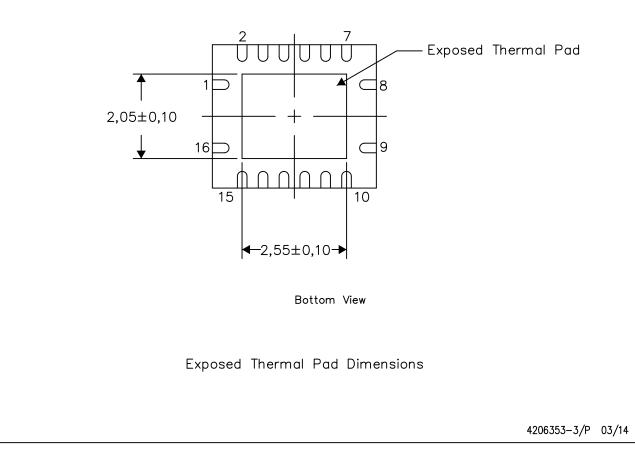
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

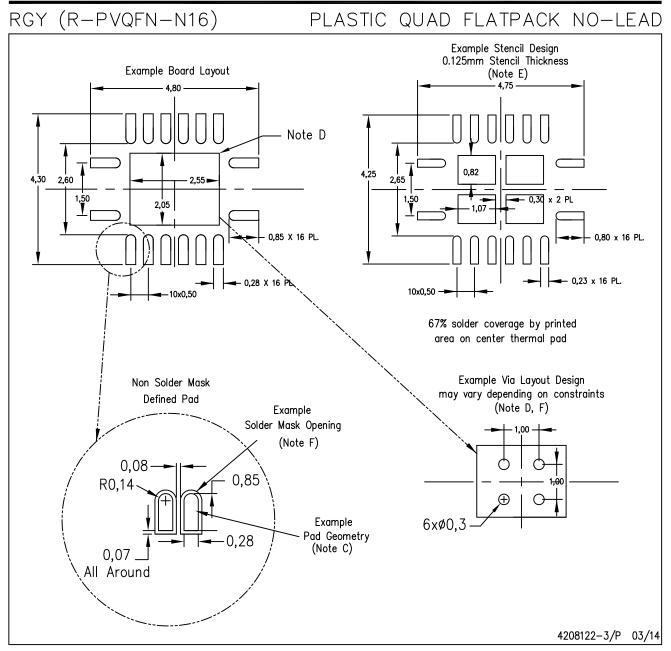
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- Ε. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Æ Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.
- The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (R-PVQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.

D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.

- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated