2-bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Application

PRODUCT DESCRIPTION

The MS4553M is a bidirectional voltage-level translator that can be used in a mixed-voltage digital signal system. It is powered by two separate architectures. The power supply range of terminal A is 1.65V to 5.5V, and that of terminal B is 2.3V to 5.5V. It can be used in logic signal conversion systems with power supply voltage of 1.8V, 2.5V, 3.3V and 5V. When OE terminal is low level, all IO terminals are in high impedance state, which significantly reduces the static power dissipation. When VCCA is powered up, OE terminal integrates pulldown current source. To ensure that the terminal maintains high impedance during power up or power down, OE terminal should be grounded by a pulldown resistor whose resistance value is determined by the ability to drive the current source.

The MS4553M has lead MSOP8 package. Operating temperature range is from -40°C to +100°C.

FEATURES

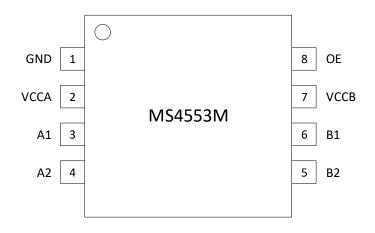
- No Need for Direction Control
- Data Rate: 20Mbps (Push-Pull Mode), 2Mbps (Open-Drain Mode)
- A Terminal Voltage Range: 1.65V to 5.5V,

B Terminal Voltage Range: 2.3V to 5.5V (V_{CCA}≤V_{CCB})

- VCC Isolation: If VCCA or VCCB is low level to GND, terminals are in high impedance state
- No Power Up Sequencing Requirement
- Support Power Down Mode

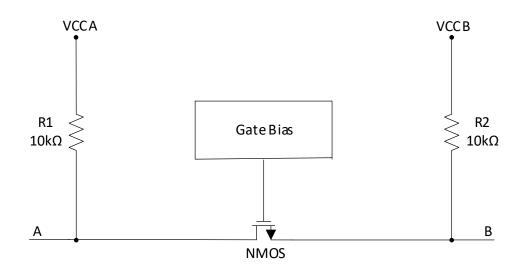
APPLICATIONS

- I²C/SMBus (System Management Bus)
- UART (Universal Asynchronous Receiver/Transmitter)
- GPIO (General-Purpose Input/Output)


PRODUCT SPECIFICATION

Part Number	Package	Marking
MS4553M	MSOP8	MS4553M

MSOP8


PIN CONFIGURATION

PIN DESCRIPTION

Pin	Name	Туре	Description
1	GND	-	Ground
2	VCCA	-	A Terminal Power Supply, 1.65V≤V _{CCA} ≤5.5V, V _{CCA} ≤V _{CCB}
3	A1	I/O	Input/Output A, Referenced VCCA
4	A2	I/O	Input/Output A, Referenced VCCA
5	B2	I/O	Input/Output B, Referenced VCCB
6	B1	I/O	Input/Output B, Referenced VCCB
7	VCCB	-	B Terminal Power Supply, 2.3V≤V _{CCB} ≤5.5V
8	OE	I	Enable Output, pull OE low, all outputs are set to high impedance state

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Any exceeding absolute maximum rating application causes permanent damage to device. Because longtime absolute operation state affects device reliability. Absolute ratings just conclude from a series of extreme tests. It doesn't represent chip can operate normally in these extreme conditions.

Parameter	Parameter Condition Ratings		Unit
Power Supply (V _{CCA})		-0.3 ~ +6.0	V
Power Supply (V _{CCB})		-0.3 ~ +6.0	V
Input Voltage Range		-0.3 ~ +6.0	V
Voltage Applied to Output in High-Impedance or Power-down State		-0.3 ~ +6.0	V
Voltage Applied to Output	A Terminal	$-0.3 \sim V_{\text{CCA}} + 0.3 V$	V
in Normal State	B Terminal	-0.3 ~ V _{CCB} +0.3V	V
Input Clamp Current	V1<0V	-50	mA
Output Clamp Current	Vo<0V	-50	mA
Output Continuous Current IO		±50	mA
Continuous Current through VCCA, VCCB and GND		±100	mA
Operating Temperature		-40 ~ +100	°C
Junction Temperature		150	°C
Storage Temperature		-65 ~ +150	°C
Soldering Temperature (10s)		260	°C

RECOMMENDED OPERATING CONDITIONS

V _{CCA} =1.65V-5.5V,	V _{CCB} =2.3V-5	5.5V, typical val	ues at T _A =25°C, unless	otherwise n	oted.		
Parameter	Symbol	С	ondition	Min	Тур	Max	Unit
	Vcca			1.65		5.5	
Power Supply	Vссв			2.3		5.5	V
			V _{CCA} =1.65V~1.95V V _{CCB} =2.3V~5.5V	V _{CCI} -0.4		V _{CCI}	
High Level Input Voltage	V _{IH} B Term	A Terminal	V _{CCA} =2.3V~5.5V, V _{CCB} =2.3V~5.5V	Vcci- 0.4		Vcci	v
		B Terminal		V _{CCI} -0.4		Vcci	
		OE Terminal		V _{CCA} ×0.8		5.5	
		A Terminal		0		0.4	
Low Level Input Voltage	VIL	B Terminal		0		0.4	v
input voltage		OE Terminal		0		V _{CCA} ×0.2	
Change for		A Terminal Pu	sh-Pull Driving			10	
Input Signal	-	B Terminal Pu	sh-Pull Driving			10	ns/V
Edge		Control Input				10	

Note:

1. V_{CCI} is relevant to input terminal.

2. V_{CCO} is relevant to output terminal.

3. V_{CCA} must be less than or equal to V_{CCB} and V_{CCA} can't exceed 5.5V.

ELECTRICAL CHARACTERISTICS

 $V_{CCA}{=}1.65V{-}5.5V,$ $V_{CCB}{=}2.3V{-}5.5V,$ typical values at $T_{A}{=}25^{\circ}C,$ unless otherwise noted.

Electrical Characteristics

Parameter	Symbol	Co	ondition	Min	Тур	Max	Unit
A Terminal High Level Output Voltage	Vона	І _{он} =-20µА,Уıв≥Vс	св-0.4V		V _{CCA} ×0.8		
A Terminal Low Level Output Voltage	Vola	I₀∟=1mA, Vıв≤0.1	5V		0.2		
B Terminal High Level Output Voltage	V _{онв}	I _{ОН} =-20µА, V _{IA} ≥V	_{CCA} -0.4V		V _{CCB} ×0.8		V
B Terminal Low Level Output Voltage	Volb	I _{OL} =1mA, VIA≤0.1	5V		0.2		
OE Input Current	lı	OE			0.1		μA
Power down		A Terminal	V _{CCA} =0V, V _{CCB} =0V~5.5V		0.1		
Leakage Current	I _{OFF}	B Terminal	V _{ССА} =0V~5.5V, V _{ССВ} =0V		0.1		μΑ
Three-state Output Leakage Current	l _{oz}	A or B Terminal	OE=0V		0.1		μΑ
		VI=Vo=OPEN,	V _{CCA} =1.65V~V _{CCB} , V _{CCB} =2.3V~5.5V		0.1		
	ICCA	I ₀ =0	V _{CCA} =5.5V, V _{CCB} =0V		0.1		μΑ
			V _{CCA} =0V, V _{CCB} =5.5V		0.1		
	Icca +Iccb	VI=VO=OPEN,	V _{CCA} = 1.65V~V _{CCB} , V _{CCB} = 2.3V~5.5V		5.5		μΑ
Quiescent Current		V _I =V _O =OPEN,	V _{CCA} =1.65V~V _{CCB} , V _{CCB} =2.3V~5.5V		5.5		
	I _{CCB}	I ₀ =0	V _{CCA} =5.5V, V _{CCB} =0V		0.1		μA
			V _{CCA} =0V, V _{CCB} =5.5V		0.1		
		Vi=Vo=OPEN	V _{CCA} =1.65V~V _{CCB} , V _{CCB} =2.3V~5.5V		0.1		
	I _{CCZA}	lo=0, OE=GND	V _{CCA} =5.5V, V _{CCB} =0V		0.1		μA
			V _{CCA} =0V, V _{CCB} =5.5V		0.1		

Parameter	Symbol	C	condition	Min	Тур	Max	Unit
		VI=VO=OPEN	V _{CCA} =1.65V~V _{CCB} , V _{CCB} =2.3V~5.5V		0.1		
Quiescent Current	Ісств	Io=0, OE=GND	V _{CCA} =5.5V, V _{CCB} =0V		0.1		μΑ
		V _{CCA} =0V, V _{CCB} =5.5V		0.1			
OE Input	C	\/ = 2.2\/.\/=	2 2)/		5		ъĘ
Capacitance	C	VCCA=3.3V, VCCB=	5.5V		5		pF
A Terminal					сг		
Input Capacitance					6.5		
B Terminal	Сю	V _{CCA} =3.3V, V _{CCB} =	3.3V		6.5		pF
Input Capacitance					0.5		

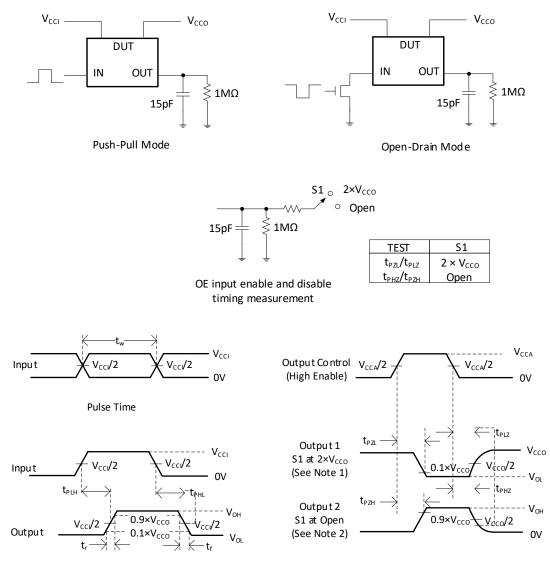
Timing Requirement

		V _{CCB} =2.5V	V _{CCB} =3.3V	V _{CCB} =5V	
Parameter		Тур	Тур	Тур	Unit
T _A = +25°C, V _{CCA} =	1.8V, unless otherwise noted				
	Push-Pull Mode	18	18	16	
Data Rate	Open-Drain Mode	2	2	2	Mbps
T _A = +25°C, V _{CCA} =2	2.5V, unless otherwise noted				
	Push-Pull Mode	25	18	17	
Data Rate	Open-Drain Mode	2	2	2	Mbps
T _A = +25°C, V _{CCA} =	3.3V, unless otherwise noted				
	Push-Pull Mode		20	17	
Data Rate	Open-Drain Mode		2	2	Mbps
T _A = +25°C, V _{CCA} =	5V, unless otherwise noted				
	Push-Pull Mode			17	
Data Rate	Open-Drain Mode			2	Mbps

Switching Characteristics

 $T_A = +25^{\circ}C$, $V_{CCA} = 1.8V$, unless otherwise noted.

Daramotor	Symbol	Condition	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	Unit			
Parameter	Symbol	Condition	Тур	Тур	Тур	Unit			
V _{CCA} = 1.8V									
		Push-Pull Mode	2.4	3.0	5.4				
	t _{PHL}	Open-Drain Mode	26.0	26.3	26.7				
A to B Delay		Push-Pull Mode	4.0	3.6	3.5	ns			
	t _{PLH}	Open-Drain Mode	175	145	110				
		Push-Pull Mode	2.0	2.6	3.6				
R to A Dolou	t _{PHL}	Open-Drain Mode	26.0	26.1	26.2				
B to A Delay		Push-Pull Mode	1.7	1.5	1.4	ns			
	t _{PLH}	Open-Drain Mode	133	69	51				
OE Enable Time (tpzн and tpzL)	t _{EN}		5.2	4.4	3.8	ns			
OE Disable Time (t _{PHZ} and t _{PLZ})	t _{DIS}		614	616	626	ns			
A Terminal Rise Time		Push-Pull Mode	16	15	14	ns			
	t _{rA}	Open-Drain Mode	89	31	10				
B Terminal Rise Time		Push-Pull Mode	12	11	9				
B Terminal Rise Time	t _{rB}	Open-Drain Mode	128	98	58	ns			
A Terminal Fall Time		Push-Pull Mode	10	9	8	nc			
	t _{fA}	Open-Drain Mode	1.9	1.7	1.6	ns			
B Terminal Fall Time		Push-Pull Mode	9	14	18				
	t _{fB}	Open-Drain Mode	2.2	2.3	2.9	ns			
Channel to Channel Skew	tsk(0)		0.5	0.5	0.5	ns			
Data Rate		Push-Pull Mode	18	18	17	Mb			
Data Rate		Open-Drain Mode	2	2	2	ps			
	1	V _{CCA} = 2.5V		1	1	1			
		Push-Pull Mode	2.7	3.3	4.8	4			
A to D Dolov	t _{phl}	Open-Drain Mode	26.2	26.4	26.7				
A to B Delay		Push-Pull Mode	2.6	2.4	2.3	ns			
	t plh	Open-Drain Mode	169	144	110				
		Push-Pull Mode	2.4	2.3	2.4				
R to A Dolay	t _{PHL}	Open-Drain Mode	26.3	26.4	26.5	l			
B to A Delay		Push-Pull Mode	2.0	1.9	1.8	ns			
	t plh	Open-Drain Mode	165	118	55				



			V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V				
Parameter	Symbol	Condition	Тур	Тур	Тур	Unit			
V _{CCA} = 2.5V									
OE Enable Time	t _{en}		14	13	12				
(tpzh and tpzl)	CLIN		17	15	12	ns			
OE Disable Time	t _{DIS}		630	635	640				
(tphz and tplz)									
A Terminal Rise Time	t _{rA}	Push-Pull Mode	13	13	12	ns			
		Open-Drain Mode	120	70	10				
B Terminal Rise Time	t _{rB}	Push-Pull Mode	4.5	3.4	2.6	ns			
		Open-Drain Mode	122	96	62				
A Terminal Fall Time	t _{fA}	Push-Pull Mode	8	7	6	ns			
		Open-Drain Mode	2.0	1.9	1.7				
B Terminal Fall Time	t _{fB}	Push-Pull Mode	8	12	15	ns			
		Open-Drain Mode	1.9	2.1	2.7				
Channel to Channel Skew	tsk(0)		0.5	0.5	0.5	ns			
	1	V _{CCA} = 3.3V		ſ					
	t _{PHL}	Push-Pull Mode		3.5	4.9	ns			
		Open-Drain Mode		26.3	26.7				
A to B Delay		Push-Pull Mode		2.2	2.0				
	t plh	Open-Drain Mode		133	104				
		Push-Pull Mode		3.0	3.2				
	t _{PHL}	Open-Drain Mode		26.6	26.8				
B to A Delay		Push-Pull Mode		1.8	1.7	ns			
	t _{PLH}	Open-Drain Mode		132	83				
OE Enable Time									
(tpzH and tpzL)	t _{EN}			12	11				
OE Disable Time						ns			
(tphz and tplz)	t _{DIS}			630	635				
		Push-Pull Mode		12	11				
A Terminal Rise Time	t _{rA}	Open-Drain Mode		87	36	ns			
D Terminal Disc Time		Push-Pull Mode		10	9				
B Terminal Rise Time	t _{rB}	Open-Drain Mode		87	56	ns			

			V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V				
Parameter	Symbol	Condition	Тур	Тур	Тур	Unit			
V _{CCA} = 3.3V									
A Terminal Fall Time		Push-Pull Mode		12	11				
A Terminal Fall Time	t _{fA}	Open-Drain Mode		2.3	2.0	ns			
B Terminal Fall Time		Push-Pull Mode		13	16				
	t _{fB}	Open-Drain Mode		2.0	2.5	ns			
Channel to Channel Skew	t _{sk(0)}			0.5	0.5	ns			
		V _{CCA} = 5.0V							
		Push-Pull Mode			5.4				
	t _{PHL}	Open-Drain Mode			26.7				
A to B Delay		Push-Pull Mode			1.9	ns			
	t plh	Open-Drain Mode			120				
	tphl	Push-Pull Mode			5.6				
		Open-Drain Mode			27.3				
B to A Delay	tplh	Push-Pull Mode			1.7	ns			
		Open-Drain Mode			126				
OE Enable Time									
(tpzh and tpzl)	t _{EN}				10				
OE Disable Time					626	ns			
(tphz and tplz)	tdis				636				
A Terminal Rise Time		Push-Pull Mode			8				
A Terminal Rise Time	trA	Open-Drain Mode			79	ns			
B Terminal Rise Time		Push-Pull Mode			7				
	t _{rB}	Open-Drain Mode			73	ns			
A Terminal Fall Time		Push-Pull Mode			8.7				
	t _{fA}	Open-Drain Mode			2.7	ns			
B Terminal Fall Time		Push-Pull Mode			8.6				
	t _{fB}	Open-Drain Mode			2.4	ns			
Channel to Channel Skew	t _{sk(0)}				0.5	ns			

TEST CIRCUIT

Propagation Delay Time

Enable and Disable Time

Note:

1. C_L includes probe and jig capacitance.

2. Waveform 1 is used for outputs with internal conditions to make the output low unless the output control terminal to be disabled. Waveform 2 is used for outputs with internal conditions to make the output high unless the output control terminal to be disabled.

3. All input pulses are supplied by a generator with the following characteristics: PRR \leq 10MHz, Z₀=50 Ω , dv/dt \geq 1V/ns.

4. Output measurements once, each measurement needs to be converted once.

5. t_{PLZ} , t_{PHZ} and t_{DIS} are the same.

- 6. $t_{\text{PZL}},\,t_{\text{PZH}}\,\text{and}\,\,t_{\text{EN}}\,\text{are the same.}$
- 7. $t_{\text{PLH}},\,t_{\text{PHL}}\,and\,t_{\text{PD}}\,are\,the\,same.$
- 8. V_{CCI} is relevant to input terminal.
- 9. V_{CCO} is relevant to output terminal.

10. All parameters and waveforms are not applicable to all devices.

APPLICATION DESCRIPTION

The MS4553M could be applied to interface two different voltage nodes, in order to connect logic level in electronic system. The MS4553M is used in point-to-point topology to connect the device or system which mutually operate in different interface voltages. The main purpose is to connect open-drain driver and I/O terminals, such as I²C and 1-Wire. And the data is bidirectional transmission without control signal. It's also used to data connection between push-pull driver and I/O terminals.

Input Driver Requirement

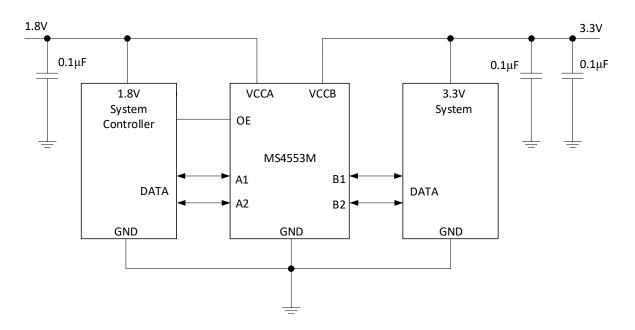
The fall time (t_{fA} , t_{fB}) depends on the output impedance of external driver, which could drive the data I/O of the MS4553M. In addition, t_{PHL} and data rate also are up to the output impedance of external driver. t_{fA} , t_{fB} , t_{PHL} and conversion rate are defined as the value where the output impedance of external driver is less than 50 Ω .

Power up

During operation, ensure $V_{CCA} \leq V_{CCB}$. And each power sequencing couldn't destroy device. Therefore, elevating any power would be no problem.

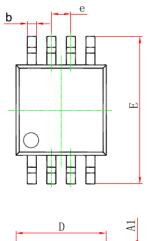
Output Load Caution

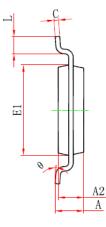
It's recommended to apply PCB layout with short traces, in order to avoid overlarge capacitance load and ensure correct one trigger. PCB signal traces should be enough short to make sure that the reflex go-back delay is less than one trigger duration. Signal integrity can be improved by ensuring that there is low impedance at driver in any reflex. The period of one trigger approaches to 30ns. In addition, the maximum capacitance driving total lumped loads is also directly up to one trigger duration. For very large capacitive load, one trigger could be overtime before the signal is driven completely. Through balancing dynamic characteristic I_{CC}, load driving capacity and the maximum bit rate, set one trigger duration is the best condition. The PCB trace length and connector would increase the capacitance value seeing from the output of the MS4553M. Therefore, recommend to use lumped load capacitor to avoid system-stage influences, such as one trigger, bus competition, output signal shock and so on.

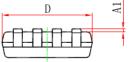

Enable and Disable

The MS4553M has one OE input terminal, which is used to disable device when OE is low level state, thus all I/Os are in high impedance state. Only VCCA is supplied, OE would have one internal pulldown current source. Disable time(t_{DIS}) represents that the delay time between OE becoming low and output in high impedance state. Enable time(t_{EN}) represents the time when user must allow that one trigger circuit just starts to operate after OE goes high.

I/O Pullup and Pulldown Resistors

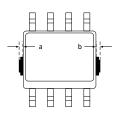

Each A terminal has an internal $10k\Omega$ pullup resistor for VCCA. Each B terminal has an internal $10k\Omega$ pullup resistor for VCCB. If a smaller pullup resistor is required, must connect an external resistor between I/O and VCCA/VCCB. While applying a smaller pullup resistor would affect V_{OL}. When OE goes low, internal pullup resistor would be disabled.


TYPICAL APPLICATION



PACKAGE OUTLINE DIMENSIONS

MSOP8



	Dimensions i	n Millimeters	Dimension	s in Inches
Symbol	Min	Max	Min	Max
А	-	1.100	-	0.043
A1	0.020	0.150	0.001	0.006
A2	0.750	0.950	0.030	0.037
b	0.250	0.380	0.010	0.015
с	0.090	0.230	0.004	0.009
D	2.900	3.100	0.114	0.122
е	0.65	DBSC	0.020	6BSC
E	4.750	5.050	0.187	0.199
E1	2.900	3.100	0.114	0.122
L	0.400	0.800	0.016	0.031
θ	0º	6º	0º	6º

Note: In addition to the package size, a and b are allowed to have the maximum size of 0.15mm for waste glue simultaneously.

The diagram is as follows: taking SOP8 package as an example.

MARKING and PACKAGING SPECIFICATION

1. Marking Drawing Description

Product Name: MS4553M

Product Code: XXXXXXX

1. Marking Drawing Demand

Laser printing, contents in the middle, font type Arial.

2. Packaging Specification

Device	Package	Piece/Reel	Reel/Box	Piece/Box	Box/Carton	Piece/Carton
MS4553M	MSOP8	3000	1	3000	8	24000

STATEMENT

- All Revision Rights of Datasheets Reserved for Ruimeng. Don't release additional notice.
 Customer should get latest version information and verify the integrity before placing order.
- When using Ruimeng products to design and produce, purchaser has the responsibility to observe safety standard and adopt corresponding precautions, in order to avoid personal injury and property loss caused by potential failure risk.
- The process of improving product is endless. And our company would sincerely provide more excellent product for customer.

MOS CIRCUIT OPERATION PRECAUTIONS

Static electricity can be generated in many places. The following precautions can be taken to effectively prevent the damage of MOS circuit caused by electrostatic discharge:

- 1. The operator shall ground through the anti-static wristband.
- 2. The equipment shell must be grounded.
- 3. The tools used in the assembly process must be grounded.
- 4. Must use conductor packaging or anti-static materials packaging or transportation.

+86-571-89966911

Rm701, No.9 Building, No. 1 WeiYe Road, Puyan Street, Binjiang District, Hangzhou, Zhejiang

http:// www.relmon.com