МУЛЬТИМЕТР DT-3260

Руководство по эксплуатации v. 2011-08-09 MIT-DVM

Цифровой мультиметр предназначен для измерения сопротивления, ёмкости, постоянного и переменного напряжения, а также осуществления проверки диодов и целостности цепи.

ОСОБЕННОСТИ

- Проверка целостности цепи («прозвонка» цепи)
- Проверка диодов
- Измерение ёмкости
- Автоматический выбор субрежимов работы. Режим SCAN.
- Автовыключение после 10 минут бездействия

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ЖК-дисплей	4 разряда	
Питание	2 батареи =1,5 В типа LR44	
Габариты	235×41×23 мм	
Вес (включая выносной щуп)	215 г	

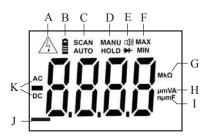
Рис. 1

ЭЛЕМЕНТЫ ПРИБОРА

- 1. Щуп
- 2. Кнопка **М** отображение максимальных / минимальных значений
- 3. Кнопка **R** выбор диапазонов измерения
- 4. Кнопка **H** удержание показаний на дисплее
- 5. ЖК-дисплей
- 6. Кнопка SEL переключение между субрежимами работы
- 7. Крышка отсека питания
- 8. Блокиратор крышки отсека питания
- 9. Переключатель режимов работы
- 10. Щуп

ЭЛЕМЕНТЫ ДИСПЛЕЯ

- Индикатор выхода значения за пределы диапазона измерений, а также выхода значения напряжения за пределы безопасного
- В. = индикатор низкого заряда батарей
- SCAN индикатор режима автоматического выбора субрежимов работы
 AUTO индикатор режима автоматического выбора диапазонов измерений
- D. MANU индикатор режима выбора субрежимов работы вручную


- Е. → индикатор режима проверки диодов
 Ф) индикатор режима проверки целостности цепи
- F. **MAX, MIN** индикаторы отображения макс. и мин. значений
- G. **МkΩ** индикатор единиц измерения сопротивления
- H. µmVA индикатор единиц измерения напряжения и силы тока
- I. **пµmF** индикатор единиц измерения ёмкости
- J. Основной индикатор отображение значения измеряемой величины
- DC, AC индикаторы режимов измерения постоянного и переменного тока / напряжения

ПОРЯДОК РАБОТЫ

ВНИМАНИЕ! Перед подключением щупов к исследуемой цепи или отключением от неё, обесточьте испытуемую сеть и дождитесь разрядки конденсаторов.

- 1. Измерение постоянного или переменного (40-400 Гц) напряжения.
- а. С помощью переключателя 9 выберите функцию «V≅».
- b. С помощью кнопки **SEL** выберите режим измерения постоянного или переменного напряжения.
- с. Подключите прибор параллельно к исследуемой цепи.
- d. Снимите показания с дисплея.
 - *Максимальное напряжение* \cong 600 *B*.
- 2. Измерение силы постоянного или переменного тока.
- а. С помощью переключателя 9 выберите функцию «mA≅».
- b. С помощью кнопки **SEL** выберите режим измерения постоянного или переменного тока.
- с. Соедините прибор последовательно с исследуемой цепью.
- d. Снимите показания с дисплея.
 - Защита от перегрузки предохранитель 0.8 A / 250 B
- 3. Измерение сопротивления и проверка целостности цепи.*
- а. С помощью переключателя 9 выберите режим « Ω CAP •») \rightarrow ».
- b. Для измерения сопротивления нажимайте на кнопку ${\bf S}$ пока на дисплее не появится индикатор $\Omega.$
- с. Для осуществления проверки целостности цепи нажимайте на кнопку **SEL** пока на дисплее не появятся индикаторы \mathfrak{Q}) и Ω .
- d. Подключите щупы прибора к части цепи, где необходимо осуществить проверку или измерить сопротивление.

Защита от перегрузки ≅ 250 В.

 Снимите показания с дисплея. При «прозвонке» цепи наличие звукового сигнала* свидетельствует о том, что цепь не имеет разрывов и сопротивление её менее 30 Ом.

*Примечание: звуковой сигнал также звучит при переключении режимов и диапазонов измерения или при выборе функции удержания показаний (см. далее). **ВНИМАНИЕ!** При измерении высоких сопротивлений избегайтеприкосновения к цупам.

4. Проверка диодов.

- а. С помощью переключателя 9 (рис. 1) выберите режим « Ω CAP •» \rightarrow ».
- Нажимайте на кнопку SEL пока на дисплее не появится сочетание следующих индикаторов: MANU, ►, V.
- с. Подключите щупы прибора к контактам диода и проведите измерения.
- d. Поменяйте полярность подключения и проведите измерения.
- е. Сравните полученные результаты измерений с данными таблицы:

Прямое включение	Обратное включение	Работоспособность диода
1,42,0 B	Сообщение «OL» Диод исправен	
Сообщение «OL»		Диод разомкнут
Очень малое значение или «0В»		Диод закорочен

5. Измерение ёмкости.

- а. С помощью переключателя режимов 9 (см. рис. 1) выберите функцию « Ω CAP » \blacktriangleright ».
- 6. Нажимайте на кнопку SEL пока на дисплее не появится сочетание следующих индикаторов: AUTO, nF.
- 7. Подключите щупы прибора к конденсатору и проведите измерение. $3 auцита \ om \ neperpyзкu \cong 250 \ B.$
- 8. Удержание показаний на дисплее.
- а. При проведении измерений нажмите на кнопку **H**, для того чтобы удержать показание на лисплее.
- b. Повторное нажатие кнопки **H** возвращает прибор в обычный режим работы.
- 9. Выбор диапазонов измерения.
- а. При включении прибора по умолчанию активируется режим автоматического переключения диапазонов измерения: на дисплее горит индикатор AUTO.
- b. Выбор диапазонов измерения осуществляется с помощью кнопки ${\bf R}$: нажатием кнопки выберите положение десятичной точки, определив таким образом диапазон измерений. Индикатор **AUTO** исчезает.
- с. Для того чтобы снова вернуться в автоматический режим, нажмите и удерживайте кнопку ${f R}$ в течение 2 секунд.
- 10. Режим SCAN (автоматический выбор субрежимов).

При выборе любого режима с помощью переключателя режимов 9 (см. рис.1) прибор работает в режиме автоматического выбора субрежимов.

- в режиме «V≅» или «mA≅» происходит автом. выбор измерения переменного или постоянного напряжения или силы тока.
- В режиме «Ω САР»» → выбор субрежима осуществляется из следующих: субрежима измерения ёмкости, субрежима измерения сопротивления и субрежима измерения проверки целостности цепи.
- 11. Замена батарей.

При низком заряде батарей на дисплее появится символ В. В этом случае следует заменить батарею, открутив блокиратор 8 крышки батарейного отсека

7 и открыв отсек 8, потянув крышку в осевом направлении прибора. ВНИМАНИЕ! Во избежание поражения электрическим током отсоедините щупы перед тем как открывать корпус прибора.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ (ПРОДОЛЖЕНИЕ)

Параметр	Диапазон	Разрешение	Точность*	
Постоянное напряжение	0600,0мВ	0,1мВ	±(1,2% ± 5 е.м.р.)	
	06,000B	1мВ		
	060,00B	10мВ	$\pm (1,5\% \pm 5 \text{ e.m.p.})$	
	0600,0B	100мВ		
Переменное напряжение	0600,0мВ	0,1мВ	±(1,5% ± 30 е.м.р)	
	06,000B	1мВ	±(1,5% ± 3 е.м.р)	
	060,00B	10мВ	±(2,0% ± 3 e.m.p)	
	0600,0B	100мВ		
C	060,00мА	0,01мА	±(1,5% ± 5 е.м.р)	
Сила постоянного тока	0600,0мА	0,1мА		
Сила переменного тока	060,00мА	0,01мА	. (2.00/ . 5	
	0600,0мА	0,1мА	$\pm (2,0\% \pm 5 \text{ e.m.p})$	
Сопротивление	0600,0 Ом	0,1 Ом	±(1,2% ± 4 е.м.р)	
	06,000 кОм	1 Ом	±(1,0% ± 2 е.м.р)	
	060,00 кОм	0,01 кОм		
	0600,0 кОм	0,1 кОм	$\pm (2,0\% \pm 2 \text{ e.m.p})$	
	06,000 МОм	1 кОм		
	060,00 МОм	10 кОм	±(2,5% ± 3 е.м.р)	
Ёмкость	06,000 нФ	1 пФ	$\pm (5,0\% \pm 50 \text{ e.m.p})$	
	060,00 нФ	0,01 нФ	±(5,0% ± 7 е.м.р)	
	0600,0 нФ	0,1 нФ		
	06,000 мкФ	1 нФ	$\pm (3,0\% \pm 5 \text{ e.m.p})$	
	060,00 мкФ	0,01 мкФ		
	0600,0 мкФ	0,1 мкФ	±(5,0% ± 5 e.m.p)	
	06,000 мФ	1 мкФ		
	010,00 мФ	0,01 мФ	±(10,0% ± 5 е.м.р)	

комплектация

1. Прибор (1 шт.); 2. батарея =1,5В типа LR44 (4 шт.); 3. руководство по эксплуатации (1 шт.); 4. сменная насадка (1 шт.); 5. предохранитель (1 шт.)

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Гарантийный срок устанавливается 12 месяцев от даты продажи. Поставщик не несет никакой ответственности за ущерб, связанный с повреждением изделия при транспортировке, в результате некорректного использования, а также в связи с модификацией или самостоятельным ремонтом изделия.