SIM7070 Series Hardware Design **LPWA Module** # **SIMCom Wireless Solutions Limited.** Building B, SIM Technology Building, No.633, Jinzhong Road Changning District, Shanghai P.R.China Tel: 86-21-31575100 support@simcom.com www.simcom.com Document Title:SIM7070 Series Hardware DesignVersion:1.03Date:2020-10-20Status:Released #### **GENERAL NOTES** SIMCOM OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS, TO SUPPORT APPLICATION AND ENGINEERING EFFORTS THAT USE THE PRODUCTS DESIGNED BY SIMCOM. THE INFORMATION PROVIDED IS BASED UPON REQUIREMENTS SPECIFICALLY PROVIDED TO SIMCOM BY THE CUSTOMERS. SIMCOM HAS NOT UNDERTAKEN ANY INDEPENDENT SEARCH FOR ADDITIONAL RELEVANT INFORMATION, INCLUDING ANY INFORMATION THAT MAY BE IN THE CUSTOMER'S POSSESSION. FURTHERMORE, SYSTEM VALIDATION OF THIS PRODUCT DESIGNED BY SIMCOM WITHIN A LARGER ELECTRONIC SYSTEM REMAINS THE RESPONSIBILITY OF THE CUSTOMER OR THE CUSTOMER'S SYSTEM INTEGRATOR. ALL SPECIFICATIONS SUPPLIED HEREIN ARE SUBJECT TO CHANGE. #### COPYRIGHT THIS DOCUMENT CONTAINS PROPRIETARY TECHNICAL INFORMATION WHICH IS THE PROPERTY OF SIMCOM WIRELESS SOLUTIONS LIMITED COPYING, TO OTHERS AND USING THIS DOCUMENT, ARE FORBIDDEN WITHOUT EXPRESS AUTHORITY BY SIMCOM. OFFENDERS ARE LIABLE TO THE PAYMENT OF INDEMNIFICATIONS. ALL RIGHTS RESERVED BY SIMCOM IN THE PROPRIETARY TECHNICAL INFORMATION , INCLUDING BUT NOT LIMITED TO REGISTRATION GRANTING OF A PATENT, A UTILITY MODEL OR DESIGN. ALL SPECIFICATION SUPPLIED HEREIN ARE SUBJECT TO CHANGE WITHOUT NOTICE AT ANY TIME. #### **SIMCom Wireless Solutions Limited** Building B, SIM Technology Building, No.633 Jinzhong Road, Changning District, Shanghai P.R.China Tel: +86 21 31575100 Email: simcom@simcom.com #### For more information, please visit: https://www.simcom.com/download/list-863-en.html ### For technical support, or to report documentation errors, please visit: https://www.simcom.com/ask/ or email to: support@simcom.com Copyright © 2020 SIMCom Wireless Solutions Limited All Rights Reserved. www.simcom.com 2 / 72 # **Version History** | Date | Version | Description of change | Author | |------------|---------|---|---| | 2019-07-31 | 1.00 | Original | XianjingZhao
Sen Zhao | | 2020-01-05 | V1.01 | Recommended package for update module update module low power related current consumption Update 2G network data transmission flow Update CAT-M1, CAT-NB1 / NB2 part BAND data transmission current consumption Update GNSS current consumption Update CAT-M,CAT-NB,GSM conducted sensitivity | XianjingZhao
Sen Zhao | | 2020-01-20 | V1.02 | Added SIM7070G-NG function description Modify CAT-M, CAT-NB2 high power transmission current consumption Update SIM7070G-NG CAT-NB,GSM sensitivity Update SIM7070G-NG band information | Xianjing Zhao
Sen Zhao | | 2020-08-14 | V1.03 | Update document template Update data such as GNSS sensitivity Update module current consumption Update the default level status of UART port Update timing parameters Update the sensitivity of B31/B72 | Zhiqiang Liu
Hongjun Tu
Xianjing Zhao | www.simcom.com 3 / 72 # **Contents** | 1. | | | |-----|--|----| | | 1.1 Product Outline | | | | 1.2 Hardware Interface Overview | | | | 1.3 Hardware Block Diagram | | | | 1.4Functional Overview | | | 2. | | | | | 2.1 Pin Assignment Overview | | | | 2.2 Pin Description | | | | 2.3 Mechanical Information | | | | 2.4 Footprint Recommendation | | | 3. | | | | | 3.1 Power Supply | 20 | | | 3.1.1 Power Supply Design Guide | | | | 3.1.2 Recommended Power Supply Circuit | | | | 3.1.3Voltage Monitor | | | | 3.2 Power on/Power off Function | | | | 3.2.1 Power on | | | | 3.2.2 Power off | | | | 3.3 UART Interface | 25 | | | 3.3.1 UART Design Guide | | | | 3.3.2 RI and DTR Behavior | | | | 3.4 USB Interface | | | | 3.5 Force USB Download Interface | | | | 3.6 SIM Interface | | | | 3.6.1 SIM Application Guide | | | | 3.7 PCM Interface | | | | 3.7.1 PCM timing | | | | 3.7.2 PCM Application Guide | | | | 3.8 I2C Interface | | | | 3.9 SPI Interface | | | | 3.10 Network status | | | | 3.11 ADC interface | | | | 3.12 LDO output | | | 4. | RF Specifications | | | | 4.1 LTE RF Specifications | | | | 4.2 LTE Antenna Design Guide | | | | 4.3 GNSS | | | | 4.3.1 GNSS Technical specification | | | | 4.3.2 GNSS Application Guide | | | | 4.4 RF traces note | | | | 4.4.1 RF traces layout | | | _ | 4.4.2 LTE ANT and other system ANT decoupling | | | 5. | Electrical Specifications | | | | 5.1 Absolute maximum ratings | | | | 5.2 Operating conditions | | | | 5.3 Operating Mode | | | | 5.3.1 Operating Mode Definition | | | | 5.3.2 Sleep mode | | | | 5.3.3 Minimum functionality mode and Flight mode | | | | 5.3.4 Power Saving Mode (PSM) | | | | 5.3.5 Extended Mode DRX (e-DRX) | | | | 5.4 Current Consumption | | | 6 | SMT Production Guide | | | · · | - OIVIT T TOURDUIT OURD | | | | 6.1 Top and Bottom View of SIM7070 Series | 59 | |----|---|----| | | 6.2 Label Information | | | | 6.3 Typical SMT Reflow Profile | 60 | | | 6.4 Moisture Sensitivity Level (MSL) | 60 | | | 6.5 Baking | | | | 6.6 Stencil Foil Design Recommendation | | | 7. | | | | | 7.1 Tray packaging | 63 | | 8. | Appendix | | | | A. Reference Design | 66 | | | B. Design check list | 66 | | | C. Coding Schemes and Maximum Net Data Rates over Air Interface | | | | D. Related Documents | 69 | | | E. Terms and Abbreviations | 70 | | | F. Safety Caution | 72 | # **Table Index** | Table 1: SIM7070 Series frequency bands and air interface | 8 | |--|----| | Table 2: General features | 10 | | Table 3: Pin definition | | | Table 4: IO parameters definition | 14 | | Table 5: Pin description | | | Table 6: VBAT pins electronic characteristic | 20 | | Table 7: Minimum input voltage | 21 | | Table 8: Recommended TVS diode list | | | Table 9: Alarm and Shutdown Voltage Range | 22 | | Table 10: Power on timing and electronic characteristic | | | Table 11: Power off timing and electronic characteristic | | | Table 12: UART electronic characteristic | | | Table 13: Recommended TVS models | | | Table 14: SIM electronic characteristic in 1.8V mode (SIM_VDD=1.8V) | | | Table 15: PCM format | | | Table 16: PCM timing parameters | | | Table 17: Multiplex function of the SPI | | | Table 18: NETLIGHT pin status | | | Table 19: ADC electronic characteristics. | | | Table 20: Electronic characteristic | | | Table 21: Conducted transmission power | | | Table 22: Maximum Power Reduction (MPR) for UE category NB&M1 Power Class 5 | | | Table 23: Operating frequencies | | | Table 24: E-UTRA operating bands | | | Table 25: Conducted receive sensitivity | 43 | | Table 26: CAT-M1 Reference sensitivity (QPSK) | 43 | | Table 27: CAT-NB2Reference sensitivity (QPSK) | 44 | | Table 28: Trace loss | | | Table 29: Recommended TVS | 45 | | Table 30: Absolute maximum ratings | | | Table 31: 1.8V Digital I/O characteristics* | | | Table 32: Recommended operating ratings | | | Table 33: Operating temperature | | | Table 34: Operating mode Definition | | | Table 35: Current consumption on VBAT Pins (VBAT=3.8V) | | | Table 36: The ESD performance measurement table (Temperature: 25℃, Humidity: 45%.) | | | Table 37: The description of label information | | | Table 38: Moisture Sensitivity Level and Floor Life | | | Table 39: Baking conditions | | | Table 40: Tray size | | | Table 41: Small Carton size | | | Table 42: Big Carton size | | | Table 43: Schematic Check List | | | Table 44: PCB Layout Check List | 67 | | Table 45: Coding Schemes and Maximum Net Data Rates over Air Interface | | | Table 46: Related Documents | | | Table 47: Terms and Abbreviations | | | Table 48: Safety Caution | 72 | # Figure Index | Figure 1: SIM7070 Series block diagram | 10 | |---|----| | Figure 2: Pin assignment overview | 12 | | Figure 3: Dimensions (Unit: mm) | 18 | | Figure 4: Footprint recommendation (Unit: mm) | 19 | | Figure 5: Voltage drop in EDGE or GPRS mode | 20 | | Figure 6: Power supply application circuit | 21 | | Figure 7:Power supply reference circuit | 22 | | Figure 8: Reference power on/off circuit | 23 | | Figure 9: Power on timing sequence | 23 | | Figure 10: Power off timing sequence | 25 | | Figure 11: UART full modem | 26 | | Figure 12: UART null modem | | | Figure 13: Reference circuit with level shifter IC | 27 | | Figure 14: Reference circuit with Transistor | 28 | | Figure 15: RI behaviour (SMS and URC report) | 28 | | Figure 16: USB reference circuit | | | Figure 17: Reference circuit of BOOT_CFG interface | 30 | | Figure 18: SIM interface reference circuit | | | Figure 19: PCM_SYNC timing | 32 | | Figure 20: External codec to module timing | | | Figure 21: Module to external codec timing | 33 | | Figure 22: Audio codec reference circuit | | | Figure 23: I2C reference circuit | 34 | | Figure 24: SPI master mode circuit | 35 | | Figure 25: SPI slave mode circuit | 36 | | Figure 26: NETLIGHT reference circuit | 36 | | Figure 27: Power on sequence of the VDD_EXT | | | Figure 28: Antenna matching circuit (MAIN_ANT) | 45 | | Figure 29: Active antenna circuit | | | Figure 30: Passive antenna circuit (Default) | | | Figure 31: RF trace should be far away from other high speed signal lines | | | Figure 32: The distance between GND to the inner conductor of SMA | | | Figure 33: e-DRX diagrammatic sketch | | | Figure 34: Top and bottom view of SIM7070 Seri | | | Figure 35: Label information | | | Figure 36: The ramp-soak-spike reflow profile of SIM7070 Series | | |
Figure 37: stencil recommendation (Unit: mm) | | | Figure 38: packaging diagram | 63 | | Figure 39: Tray drawing | | | Figure 40: Small carton drawing | | | Figure 41: Big carton drawing | | | Figure 42: Reference design | 66 | # 1.Introduction This document describes the electronic specifications, RF specifications, interfaces, mechanical characteristics and testing results of the SIMCom SIM7070 Series module. With the help of this document and other SIM7070 Series software application notes/user guides, users can understand and use SIM7070 Series module to design and develop applications quickly. # 1.1 Product Outline The SIM7070 Series modules support LTE CAT-M1, LTE CAT-NB1/CAT-NB2, GSM, GPRS and EDGE. The physical dimension of SIM7070 Series is 24mm×24mm×2.3 mm. And the physical dimension is compatible with the packaging of SIM7000, SIM800F and SIM900. It is designed for applications that need low latency, Low throughput data communication in a variety of radio propagation conditions. Due to the unique combination of performance, security and flexibility, this module is ideally suited for M2M applications, such as metering, asset tracking. Remote monitoring, E-health etc. Table 1: SIM7070 Series frequency bands and air interface | Network | | SIM7070 Series | | | | | |------------|-------------|----------------|-----|----------|-------------|--| | Туре | Band | SIM7070G | | SIM7070E | SIM7070G-NG | | | | Category | M1 | NB2 | M1 NB2 | NB2 | | | | LTE-FDD B1 | R | R | R R | B | | | | LTE-FDD B2 | B | R | B B | R | | | | LTE-FDD B3 | R | B | B B | B | | | | LTE-FDD B4 | B | B | B B | B | | | | LTE-FDD B5 | B | B | BB | B | | | | LTE-FDD B8 | B | B | B B | B | | | | LTE-FDD B12 | B | B | B B | B | | | | LTE-FDD B13 | B | B | BB | B | | | LTE-HD-FDD | LTE-FDD B14 | B | | B | | | | LIE-ND-FDD | LTE-FDD B18 | R | B | B B | B | | | | LTE-FDD B19 | B | R | B B | B | | | | LTE-FDD B20 | R | B | B B | B | | | | LTE-FDD B25 | R | R | BB | B | | | | LTE-FDD B26 | B | R | BB | B | | | | LTE-FDD B27 | R | | B | | | | | LTE-FDD B28 | B | R | B B | B | | | | LTE-FDD B31 | | | B B | | | | | LTE-FDD B66 | R | R | BB | B | | | | LTE-FDD B71 | | B | | B | | www.simcom.com 8 / 72 | | LTE-FDD B72 | | | B | | | |-----------|-------------|---|---|---|---|---| | | LTE-FDD B85 | B | B | B | B | B | | | GSM850MHz | | B | | B | B | | GSM/GPRS/ | EGSM900MHz | | B | | B | B | | EDGE | DCS1800MHz | | R | | B | B | | | PCS1900MHz | | B | | B | B | | | GPS | | B | | B | | | GNSS | GLONASS | | B | | B | | | | BeiDou | | B | | B | | | | Galileo | | R | | B | | # NOTE Galileo is default closed in software. But users can open it via AT command "AT+CGNSMOD". For more information about these AT commands, please refer to Document [1] # 1.2 Hardware Interface Overview The interfaces are described in detail in the next chapters include: - Power Supply - USB Interface - UART Interface - SIM Interface - ADC - LDO Power Output - PCM Interface - I2C Interface - SPI Interface - GPIOs - Antenna Interface www.simcom.com 9 / 72 # 1.3 Hardware Block Diagram The block diagram of the SIM7070 Series module is shown in the figure below. Figure 1: SIM7070 Series block diagram ### 1.4Functional Overview Table 2 describes the features of the SIM7070 series modules. **Table 2: General features** | Feature | Implementation | |-----------------------|---| | Power supply | SIM 7070G Power supply voltage 3.0V \sim 4.6V. Default :3.8V SIM 7070E Power supply voltage 3.2V \sim 4.2V. Default :3.8V SIM 7070G-NG Power supply voltage 3.0V \sim 4.6V. Default :3.8V | | Power saving | Current in PSM mode: 3.5uA | | Radio frequency bands | Please refer to the table 1 | | Transmitting power | GSM/GPRS power class: GSM850: 4 (2W) EGSM900: 4 (2W) DCS1800: 1 (1W)PCS1900: 4 (1W) EDGE power class: GSM850: E2 (0.5W) EGSM900: E2 (0.5W) | | - DCS1800: E1 (0.4W) -PCS1900: E1 (0.4W) -PCS1900: E1 (0.4W) LTE power class: 5 (0.125W).Band31/Band72 power class: 2(0.4W) GPRS: Uplink up to 85.6Kbps, Downlink up to 85.6Kbps. EDGE: Uplink up to 236.8Kbps, Downlink up to 236.8Kbps Data Transmission LTE CAT M1:589Kbps (DL). LTE CAT M1:5119Kbps (UL). LTE CAT NB1/NB2: 136Kbps (DL). LTE CAT NB1/NB2: 150Kbps (DL). LTE CAT NB1/NB2: 150Kbps (UL). Antenna LTE main antenna. GNSS antenna. GNSS antenna. GNSS engine (GPS, GLONASS, BDS and Galileo). Protocol: NMEA. SIM interface Support identity card: 1.8V only. Support PCM interface. Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40°C +85°C Storage temperature: -40°C +85°C Storage temperature: -40°C +85°C Storage temperature: -40°C +85°C Storage temperature: -40°C +85°C | | | |--|--------------------------|---| | LTE power class: 5 (0.125W).Band31/Band72 power class: 2(0.4W) GPRS: Uplink up to 85.6Kbps, Downlink up to 85.6Kbps. EDGE: Uplink up to 236.8Kbps, Downlink up to 236.8Kbps LTE CAT M1:589Kbps (DL). Throughput LTE CAT M1:119Kbps (DL). LTE CAT NB1/NB2: 136Kbps (DL). LTE CAT NB1/NB2: 150Kbps (DL). LTE CAT NB1/NB2: 150Kbps (UL). LTE main antenna. GNSS antenna. GNSS engine (GPS, GLONASS, BDS and Galileo). Protocol: NMEA. SIM interface Support identity card: 1.8V only. Support PCM interface. Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Size: 24×24×2.3mm Weight: 2.9±0.2g operation temperature: -40°C~ +85°C | | | | GPRS: Uplink up to 85.6Kbps, Downlink up to 85.6Kbps. EDGE: Uplink up to 236.8Kbps, Downlink up to 236.8Kbps LTE CAT M1: 589Kbps (DL). Throughput LTE CAT M1: 1119Kbps (UL). LTE CAT M1: MB2: 136Kbps (DL). LTE CAT M1: MB2: 136Kbps (DL). LTE CAT M1: MB2: 150Kbps (UL). LTE CAT M1: MB2: 150Kbps (UL). LTE main antenna. GNSS antenna. GNSS antenna. GNSS engine (GPS, GLONASS, BDS and Galileo). Protocol: NMEA. SIM interface Support identity card: 1.8V only. Support PCM interface. Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade Firmware upgrade over USB interface Size: 24×24×2.3mm Weight: 2.9±0.2g operation temperature: -40°C~ +85°C | | , | | Data Transmission Throughput LTE CAT M1:589Kbps (DL). LTE CAT M1:1119Kbps (UL). LTE CAT NB1/NB2: 136Kbps (DL). LTE CAT NB1/NB2: 150Kbps
(DL). LTE CAT NB1/NB2: 150Kbps (UL). LTE main antenna. GNSS antenna. GNSS engine (GPS, GLONASS, BDS and Galileo). Protocol: NMEA. SIM interface Support identity card: 1.8V only. Support PCM interface. Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Size: 24×24×2.3mm Weight:2.9±0.2g Operation temperature: -40°C~ +85°C | | | | Data Transmission Throughput LTE CAT M1: 1119Kbps (UL). LTE CAT NB1/NB2: 136Kbps (DL). LTE CAT NB1/NB2: 150Kbps (UL). LTE main antenna. GNSS antenna. GNSS angine (GPS, GLONASS, BDS and Galileo). Protocol: NMEA. SIM interface Support identity card: 1.8V only. Digital audio feature Digital audio feature Support PCM interface. Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Physical characteristics Size: 24×24×2.3mm Weight: 2.9±0.2g Operation temperature: -40°C~+85°C | | | | Throughput LTE CAT M1: 1119Kbps (UL). LTE CAT NB1/NB2: 136Kbps (DL). LTE CAT NB1/NB2: 150Kbps (UL). Antenna CNSS antenna. GNSS engine (GPS, GLONASS, BDS and Galileo). Protocol: NMEA. SIM interface Support identity card: 1.8V only. Digital audio feature Digital audio feature Support PCM interface. Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Physical characteristics Size: 24×24×2.3mm Weight:2.9±0.2g Temperature range DIATE CAT NB1/NB2: 136Kbps (UL). LTE SUSD and Galileo). Protocol: NMEA. SIM Interface Support PCM interface. Physical characteristics LTE CAT NB1/NB2: 136Kbps (UL). | D . T | | | LTE CAT NB1/NB2: 136Kbps (DL). LTE CAT NB1/NB2: 150Kbps (UL). Antenna LTE main antenna. GNSS antenna. GNSS engine (GPS, GLONASS, BDS and Galileo). Protocol: NMEA. SIM interface Support identity card: 1.8V only. Digital audio feature Support PCM interface. Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Physical characteristics Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40°C~ +85°C | | | | LTE CAT NB1/NB2: 150Kbps (UL). Antenna LTE main antenna. GNSS antenna. GNSS antenna. GNSS engine (GPS, GLONASS, BDS and Galileo). Protocol: NMEA. SIM interface Support identity card: 1.8V only. Digital audio feature Support PCM interface. Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Physical characteristics Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40°C~+85°C | Inrougnput | | | Antenna LTE main antenna. GNSS antenna. GNSS engine (GPS, GLONASS, BDS and Galileo). Protocol: NMEA. SIM interface Support identity card: 1.8V only. Digital audio feature Support PCM interface. Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Physical characteristics Size: 24×24×2.3mm Weight:2.9±0.2g Temperature range operation temperature: -40°C~ +85°C | | · · · · | | Antenna GNSS antenna. GNSS engine (GPS, GLONASS, BDS and Galileo). Protocol: NMEA. SIM interface Support identity card: 1.8V only. Digital audio feature Support PCM interface. Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Physical characteristics Size: 24×24×2.3mm Weight: 2.9±0.2g operation temperature: -40°C~ +85°C | | | | GNSS engine (GPS, GLONASS, BDS and Galileo). Protocol: NMEA. SIM interface Support identity card: 1.8V only. Digital audio feature Support PCM interface. Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Physical characteristics Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40°C~ +85°C | Antenna | | | Frotocol: NMEA. SIM interface Support identity card: 1.8V only. Digital audio feature Support PCM interface. Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Physical characteristics Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40°C~ +85°C | | | | SIM interface Support identity card: 1.8V only. Digital audio feature Support PCM interface. Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Physical characteristics Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40 ℃ ~ +85 ℃ | GNSS | | | Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40°C~ +85°C | SIM interface | | | Only support PCM master mode and short frame sync SPI interface Support for serial data bus SPI, only used during DAM application secondary
development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40°C~ +85°C | | | | SPI interface Support for serial data bus SPI, only used during DAM application secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Size: 24×24×2.3mm Weight: 2.9±0.2g operation temperature: -40°C~ +85°C | Digital audio feature | •• | | SPI interface secondary development. One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40 °C ~ +85 °C | | Only support PCM master mode and short frame sync | | UART interface interfac | SPI interface | | | UART interface Communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Physical characteristics Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40 °C ~ +85 °C | | | | UART interface Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Physical characteristics Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40 °C ~ +85 °C | | | | UART interface 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40 °C ~ +85 °C | | Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). | | Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40 °C ~ +85 °C | UART interface | • | | application when secondary development. USB USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Physical characteristics Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40 °C ~ +85 °C | | · | | USB 2.0 high speed interface. Firmware upgrade Firmware upgrade over USB interface Physical characteristics Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40 °C ~ +85 °C | | Two channel 2-wire UART2 and UART3 only used as UART in DAM | | Firmware upgrade Firmware upgrade over USB interface Physical characteristics Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40 °C ~ +85 °C | | application when secondary development. | | Physical characteristics Size: 24×24×2.3mm Weight:2.9±0.2g operation temperature: -40 °C ~ +85 °C | USB | USB 2.0 high speed interface. | | Physical characteristics Weight:2.9±0.2g operation temperature: -40 °C ~ +85 °C | Firmware upgrade | Firmware upgrade over USB interface | | weight:2.9±0.2g operation temperature: -40 °C ~ +85 °C Temperature range | Dhysical sharestaristics | Size: 24×24×2.3mm | | lemnerature range ' ' | Physical characteristics | Weight:2.9±0.2g | | Storage temperature -45°C to +90°C | Temperature range | · | | | Tomperature range | Storage temperature -45°C to +90°C | # 2.Package Information # 2.1 Pin Assignment Overview All functions of the SIM7070 series will be provided through 68 pads that will be connected to the customers' platform. The Figure 2 is the pin assignment of the SIM7070 series. Figure 2: Pin assignment overview Table 3 lists the SIM7070 series module pin numbers and pin definitions. Table 3: Pin definition | Pin No. | Pin Name | Pin No. | Pin Name | |---------|-----------|---------|-----------| | 1 | PWRKEY | 2 | GND | | 3 | UART1_DTR | 4 | UART1_RI | | 5 | UART1_DCD | 6 | BOOT_CFG* | | 7 | UART1_CTS | 8 | UART1_RTS | | 9 | UART1_TXD | 10 | UART1_RXD | |----|-----------|----|-----------| | 11 | PCM_CLK | 12 | PCM_SYNC | | 13 | PCM_DIN | 14 | PCM_DOUT | | 15 | VDD_EXT | 16 | NC | | 17 | GND | 18 | GND | | 19 | GPIO1 | 20 | GPIO2 | | 21 | GPIO3 | 22 | DEBUG_RXD | | 23 | DEBUG_TXD | 24 | USB_VBUS | | 25 | ADC | 26 | NC | | 27 | USB_DP | 28 | USB_DM | | 29 | GND | 30 | SIM_VDD | | 31 | SIM_DATA | 32 | SIM_CLK | | 33 | SIM_RST | 34 | GPIO4 | | 35 | NC | 36 | NC | | 37 | I2C_SDA | 38 | I2C_SCL | | 39 | GND | 40 | NC | | 41 | NC | 42 | NC | | 43 | NC | 44 | NC | | 45 | GND | 46 | GND | | 47 | NC | 48 | GPIO5 | | 49 | UART3_RXD | 50 | UART3_TXD | | 51 | NC | 52 | NETLIGHT | | 53 | GNSS_ANT | 54 | GND | | 55 | VBAT | 56 | VBAT | | 57 | VBAT | 58 | GND | | 59 | GND | 60 | RF_ANT | | 61 | GND | 62 | GND | | 63 | GND | 64 | GND | | 65 | GND | 66 | STATUS | | 67 | GPIO6 | 68 | GPI07 | # NOTE Before the normal power up, BOOT_CFG and GPIO1 cannot be pulled up. # 2.2 Pin Description This section describes the SIM7070 series of pins and pin function definitions **Table 4: IO parameters definition** | Pintype | Description | |---------|--------------------------------| | PI | Power input | | PO | Power output | | Al | Analog input | | AIO | Analog input/output | | I/O | Bidirectional input /output | | DI | Digital input | | DO | Digital output | | DOH | Digital output with high level | | DOL | Digital output with low level | | PU | Pull up | | PD | Pull down | **Table 5: Pin description** | Pin name | Pin
No. | Default
status | Description | Comment | |--------------|--|-------------------|--|---| | Power supply | 1 | | | | | VBAT | 55,56
57 | PI | Power supply, SIM7070G voltage range: 3.0~4.6V. SIM7070E voltage range: 3.2~4.2V. SIM7070G-NG voltage range: 3.0~4.6 | V. | | VDD_EXT | 15 | РО | LDO power output 1.8V for other external circuits with Max 50mA current output. | This power supple only use for external GPIO pulling up or level shift circuit. If unused, keep it open. | | GND | 2,17
18,29
39,45
46,54
58,59
61,62
63,64
65 | | Ground | | | System Contr | ol . | | | | | PWRKEY | 1 | DI,PU | System power on/off control input, active low. The efficient input low level must be below 0.4V. | The level is 1.5V when this PIN is floating; | | | | | The efficient input high level must be higher than 1.0V. After the PWRKEY continues to pull down more than 12.6S, the system will automatically reset. Therefore, long-term grounding is not recommended | | |----------------|--------------|--------|--|---| | SIM interface | | | | | | SIM_VDD | 30 | PO | Power output for SIM card, its output Voltage depends on SIM card type automatically. Its output current is up to 50mA. | All lines of SIM interface | | SIM_DATA | 31 | I/O,PU | SIM Card data I/O, which has been pulled up via a 20KR resistor to SIM_VDD internally. Do not pull it up or down externally. | should be protected against ESD. | | SIM_CLK | 32 | DO | SIM clock | | | SIM_RST | 33 | DO | SIM Reset | | | USB* | | | | | | USB_VBUS | 24 | DI,PD | Valid USB detection input with 3.5~5.25V detection voltage | Software download | | USB_DP | 27 | I/O | Positive line of the differential, bi-directional USB signal. | interface. It is recommended to reserve interfaces or | | USB_DM | 28 | I/O | Negative line of the differential, bi-directional USB signal. | test points. | | UART interface |) | | | | | UART1_DTR | 3 | DI,PH | DTE get ready | | | UART1_RI | 4 | DOH | Ring Indicator | | | UART1_DCD | 5 | DOH | Carrier detects | If unused keep them | | UART1_CTS | 7 | DOL | Clear to Send | If unused, keep them open. | | UART1_RTS | 8 | DI,PL | Request to send | орон. | | UART1_TXD | 9 | DOH | Transmit Data | | | UART1_RXD | 10 | DI,PL | Receive Data | | | UART3_RXD | 49 | DI,PL | The default function is GPIO. It can't | | | UART3_TXD | 50 | DOL | be used as AT communication port. But it can be used for software secondary development. It can also be configured as NMEA data output for GNSS. | If unused, keep them open. | |
DEBUG_RXD | 22 | DI,PL | The default function is GPIO, and | Debug UART, the boot | | DEBUG_TXD | 23 | DOH | UART is only used for software secondary development. Cannot be used as AT communication port. | log will be output during boot up. If unused, keep them open. | | I2C interface | | | · | · | | | | | | | | I2C_SDA | 37 | I/O | I2C data input/output | If unused, keep open, | |-----------------|----|-------|---|---| | I2C_SCL | 38 | DO | I2C clock output | or else pull them up via1KΩ resistors to the VDD EXT. | | PCM interfac | e | | | VDD_LX1. | | PCM_CLK | 11 | DO | PCM data bit clock. | | | PCM_SYNC | 12 | DO | PCM data frame sync signal. | If unused, please keep | | PCM_DIN | 13 | DI | PCM data input. | them open. | | PCM_DOUT | 14 | DO | PCM data output. | | | SPI interface |) | | | | | SPI_MOSI | 19 | DO | Main Controller DATA output.
Multiplexed by GPIO1 | | | SPI_MISO | 20 | DO | Main Controller DATA input. Multiplexed by GPIO2 | If unused, please keep | | SPI_CLK | 21 | DI | Bus clock output,
Multiplexed by GPIO3 | them open. | | SPI_CS | 48 | DO | Chip Select,
Multiplexed by GPIO5 | | | GPIO | | | , | | | NETLIGHT | 52 | DO | LED control output as network status | | | NETEIOIT | 02 | | indication. Operating status output. | | | STATUS | 66 | DO | High level: Power on and firmware ready Low level: Power off | | | GPIO1 | 19 | Ю | General purpose input/output, With interrupt function Configurable as SPI_MOSI Note: This chip pin has fast boot function. It cannot be pulled up before booting. Otherwise it will affect the normal boot. | If unused, keep them open. | | GPIO2 | 20 | Ю | General purpose input/output, Without interrupt function. Configurable as SPI MISO | | | GPIO3 | 21 | Ю | General purpose input/output, Without interrupt function. Configurable as SPI_CLK | | | GPIO4 | 34 | IO | General purpose input/output, With interrupt function | | | GPIO5 | 48 | Ю | General purpose input/output, With interrupt function Configurable as SPI_CS | | | GPIO6 | 67 | Ю | General purpose input/output, With interrupt function | | | GPI07 | 68 | Ю | General purpose input/output, With interrupt function | | | RF interface | | | | | | GNSS_ANT | 53 | Al | GNSS antenna soldering pad | | | RF_ANT | 60 | AIO | MAIN antenna soldering pad | | | Other interface | • | | | | | BOOT_CFG | 6 | DI,PD | If it needs to enter into forced USB | Reserve a test points | | | | | download mode, it must be pulling up
this pin to VDD_EXT before press the
PWRKEY. If it needs to boot up
normally, please keep this pin open | for it. Keep it open.DO
NOT PULL UP DURING
NORMAL POWER UP! | |-----|---|----|---|---| | ADC | 25 | Al | Analog-digital converter input. voltage range:0V∼1.875V. | If unused, keep them open. | | NC | 16,26
35,36
40,41
42,43
44,47
51 | | No connection. | Keep it open | # NOTE Please reserve a test point for BOOT_CFG and VDD_EXT. If there is no USB connector, please also reserve a test point for USB_VBUS, USB_DP, and USB_DM for Firmware upgrade. # 2.3 Mechanical Information Figure 3 depicts the mechanical dimensions of the SIM7070 series and describes the length, width, height and tolerance of the SIM7070 series of modules. Figure 3: Dimensions (Unit: mm) # 2.4 Footprint Recommendation Figure 4 depicts the Foot printer commended of The SIM7070 series modules. Figure 4: Footprint recommendation (Unit: mm) # 3.Interface Application # 3.1 Power Supply Pin 55, pin 56 and pin 57 are VBAT power input. On VBAT pads, when module works on CAT-M1 or NB-IoT mode, the ripple current is up to 0.6A typically. For steady voltage, the power supply capability must be up to 0.5A. On VBAT pads, when module works on EDGE or GPRS mode, The ripple current is up to 2A typically. For steady voltage, the power supply capability must be up to 2A. in order to avoid the voltage dropped down more than 300mV, the load capacitor on VBAT pads must be up to 300uF. The figure 5shows the VBAT voltage ripple wave at the maximum power transmit phase in EDGE/GPRS emission mode. Figure 5: Voltage drop in EDGE or GPRS mode Table 6 describes the electrical characteristics of the VBAT pin and the current consumption of the module in different modes. Table 6: VBAT pins electronic characteristic | Symbol | Description | | Min | Тур | Max | Unit | |-------------------|---|-------------------|---------------------------------|-------------|-----|---------------------------------------| | VBAT | Module power voltage | SIM7070G | 3 | 3.8 | 4.6 | V | | | | SIM7070E | 3.2 | 3.8 | 4.2 | V | | | | SIM7070G-NG | 3 | 3.8 | 4.6 | V | | IVBAT(peak) | Module power peak current in CAT-M1 and NB-IoT emission mode. | | - | 0 .5 | - | А | | IVBAT(avera ge) | Module power average curre | nt in normal mode | Please refer to the chapter 5.4 | | | · · · · · · · · · · · · · · · · · · · | | IVBAT(sleep) | Power supply current in sleep | o mode | | | | ter 5.4 | | IVBAT(powe r-off) | Module power current in power off mode. | | - | - | 15 | uA | | IVBAT(PSM) | Module power current in PSN | /I mode. | - | 3.5 | - | uA | www.simcom.com 20 / 72 # 3.1.1 Power Supply Design Guide In the user's design, special attention must be paid to the design of the power supply section to ensure that the VBAT drop cannot be lower than the minimum voltage shown in Table 7 even when the module current consumption reaches the instantaneous maximum. If the VBAT voltage drops below the minimum input voltage, the module may shut down due to low voltage Table 7: Minimum input voltage | Module | Minimum input voltage(V) | |-------------|--------------------------| | SIM7070G | 3.0 | | SIM7070E | 3.2 | | SIM7070G-NG | 3.0 | The figure 6 shows the recommended circuit. Figure 6: Power supply application circuit In addition, for ESD protection, it is suggested to add a TVS diode near the VBAT PINs. These capacitors should be put as close as possible to VBAT pads. Also, users should keep VBAT trace on circuit board wider than 2 mm to minimize PCB trace impedance. Table 8: Recommended TVS diode list | No. | Manufacturer | Part Number | Package | |-----|--------------|---------------|---------| | 1 | Prisemi | PESDHC2FD4V5B | DFN1006 | | 2 | Prisemi | PESDHC3D3V3U | SOD323 | | 3 | WILLsemi | ESD5651N-2/TR | DFN1006 | #### **NOTE** - 1. The customer's circuit design must have the function that the master can control the power off of the module. The module can be shut down or restarted normally. Only when the module is abnormal and cannot be shut down or restarted normally can the power be turned off. - 2. When the module is working normally, do not cut off the power supply of the module VBAT directly to avoid damage to the internal flash of the module. It is strongly recommended to turn off the module through PWRKEY or AT command before disconnecting the module VBAT power. www.simcom.com 21 / 72 # 3.1.2 Recommended Power Supply Circuit If the supply voltage exceeds the supply range of VBAT, the buck circuit should be used to meet the demand of power supply. When choosing buck chip, besides considering the maximum current output capability of IC to meet the demand of SIM7070 Series, it is also necessary to consider the low static power consumption of IC in PSM mode. Figure 7: Power supply reference circuit # 3.1.3Voltage Monitor To monitor the VBAT voltage, the AT command "AT+CBC" can be used. AT command "AT+CBATCHK=1" can be used to enable the VBAT voltage monitoring function. When the VBAT voltage exceeds the preset alarm voltage range, a warning message will be reported through the AT port. When the VBAT voltage exceeds the preset shutdown voltage range, the module will automatically shut down. The default alarm voltage and shutdown voltage of the SIM7070 series are shown in Table 9. Table 9: Alarm and Shutdown Voltage Range | Module | Low voltage shutdown(V) | Low voltage
alarm(V) | High voltage
shutdown(V) | High voltage
alarm(V) | |-------------|-------------------------|-------------------------|-----------------------------|--------------------------| | SIM7070G | 2.9 | 3.1 | 4.65 | 4.7 | | SIM7070E | 3.1 | 3.3 | 4.25 | 4.3 | | SIM7070G-NG | 2.9 | 3.1 | 4.65 | 4.7 | #### NOTE Under-voltage warning function and under-voltage power-off function are disabled by default. For more information about these AT commands, please refer to Document [1]. www.simcom.com 22 / 72 # 3.2 Power on/Power off Function #### 3.2.1 Power on The PWTRKEY pin has a default voltage of 1.5V. SIM7070 Series can be powered on by briefly pulling the PWRKEY pin to ground. It is strongly recommended to put an ESD protection diode close to the PWRKEY pin, as it would strongly enhance the ESD performance of PWRKEY pin. The PWRKEY pin has its own reset function. The reset time is determined by the internal timer (default is 12.6 seconds). After the PWRKEY is pulled low, the module will be reset after 12.6 seconds. Therefore, it is not recommended to connect PWRKEY to GND all the time in external circuit design. Please refer to the following figure for the recommended reference circuit. Figure 8: Reference power on/off circuit The power-on scenarios are illustrated in the following figure. Figure 9: Power on timing sequence Table 10: Power on timing and electronic characteristic www.simcom.com 23 / 72 | Symbol | Parameter | Min. | Тур. | Max. | Unit | |-------------
---|------|------|------|------| | Ton | The time of active low level impulse of PWRKEY pin to power on module | 1 | - | 12.6 | S | | Ton(Vdd) | The time from power-on issue to VDD_EXT pin output high level. | - | 64 | - | ms | | Ton(status) | The time from power-on issue to STATUS pin output high level(indicating power up ready) | 1.8 | - | - | S | | Ton(uart) | The time from power-on issue to UART port ready | 1.8 | - | - | S | | Ton(usb) | The time from power-on issue to USB port ready | 1.8 | - | - | S | | VIH | Input high level voltage on PWRKEY pin | 1.0 | 1.5 | 1.8 | V | | VIL | Input low level voltage on PWRKEY pin | -0.3 | 0 | 0.4 | V | #### NOTE - 1. PWRKEY cannot be shorted all the way to GND. - 2. It is recommended to ensure that the VBAT voltage rises and stabilizes before pulling down the PWRKEY pin to start up. - 3. Before turning on the module, be sure to pay attention to the maximum conditions (such as voltage and temperature range) allowed by the module, otherwise exceeding the absolute maximum value of the module may cause permanent damage to the module. #### 3.2.2 Power off The following methods can be used to power offSIM7070 Series. - Method 1: Power off SIM7070 Series by pulling the PWRKEY pin to ground. - Method 2: Power off SIM7070 Series by AT command "AT+CPOWD=1". - Method 3: over-voltage or under-voltage automatic power off. The function can be enabled by AT command "AT+CBATCHK=1". Default is disabled. #### **NOTE** For details about "AT+CPOWD" and "AT+CBATCHK", please refer to Document [1]. It is not recommended to turn off the module by disconnecting VBAT power. Otherwise, there is a risk of damage to the module file system. These procedures will make modules disconnect from the network and allow the software to enter a safe state, and save data before module be powered off completely. The power off scenario by pulling down the PWRKEY pin is illustrated in the figure 10. www.simcom.com 24 / 72 Figure 10: Power off timing sequence Table 11: Power off timing and electronic characteristic | Cymalaal | Dovemeter | 7 | I India | | | |-------------|--|------|---------|------|--------| | Symbol | Parameter | Min. | Тур. | Max. | " Unit | | Toff | The active low level time pulse on PWRKEY pin to power off module | 1.2 | - | - | S | | Toff(vdd) | The time from power-off issue to VDD_EXT pin output low level | 1.8 | - | - | S | | Toff(status | The time from power-off issue to STATUS pin output low level(indicating power off)* | 1.8 | - | - | S | | Toff(uart) | The time from power-off issue to UART port off | 1.8 | - | _ | S | | Toff(usb) | The time from power-off issue to USB port off | 1.8 | - | - | S | | Toff-on | The buffer time from power-off issue to power-on issue | 2 | - | - | S | #### **NOTE** The STATUS pin can be used to detect whether module is powered on or not. When module has been powered on and firmware goes ready, STATUS will be high level, or else STATUS will still low level. # 3.3 UART Interface SIM7070 Series can provide 3channels serial ports: One channel full-function serial port UART1, it can be used for AT command communication between the www.simcom.com 25 / 72 module and the peripheral MCU. One channel 2-wire serial port UART3, the default function after booting is GPIO. It can be configured as a UART function, but it cannot be used for AT command communication. It is only used as UART in DAM (Downloadable Application Module) application when secondary development. It can also be configured as a GNSS NMEA data output port. One channel serial port DEBUG_UART, the boot log will be output from hear during the system boot-up. The default function after booting is GPIO. It can be configured as a UART function, but it cannot be used for AT command communication. It is only used as UART in DAM (Downloadable Application Module) application when secondary development. When the UART port is used as the AT communication port, it supports high speed mode, the baud rate is up to 4Mbps. The communication baud rates include: $0,\!300,\!600,\!1200,\!2400,\!4800,\!9600,\!19200,\!38400,\!57600,\!115200,\!230400,\!921600,\!2000000,\!3000000,\!3200000$ and 3686400 bps. The rate 0bps marks auto baud rate. And it supports auto baud rate, but the rate only supported on 9600, 19200, 38400, 57600, 115200. If users need to change to other baud rate, it needs to switch via manual operation. # 3.3.1 UART Design Guide The following figures show the reference design. Figure 11: UART full modem www.simcom.com 26 / 72 Figure 12: UART null modem Table 12: UART electronic characteristic | Symbol | Description | Min. | Тур. | Max. | Unit | |--------|--------------------------------|------|------|------|------| | VIH | UART input high level voltage | 1.17 | 1.8 | | V | | VIL | UART input low level voltage | -0.3 | 0 | 0.63 | V | | VOH | UART output high level voltage | 1.35 | 1.8 | 1.8 | V | | VOL | UART output low level voltage | 0 | 0 | 0.45 | V | The SIM7070 Series UART is 1.8V voltage interface. If user's UART application circuit is 3.3V voltage interface, the level shifter circuits should be used for voltage matching. The following figure shows the voltage matching reference design. Figure 13: Reference circuit with level shifter IC www.simcom.com 27 / 72 Figure 14: Reference circuit with Transistor #### NOTE When it uses the level shifter IC, the pull up resistance on TXD_3.3V, RTS_3.3V, DCD_3.3V and RI_3.3V should not be less than $47K\Omega$. When it uses the transistor, the selection of the transistor must be a high-speed transistor, and the model MMBT3904 is recommended. ### 3.3.2 RI and DTR Behavior The RI pin description: The RI pin can be used to interrupt output signal to inform the host controller such as application CPU. Before that, users must use AT command "AT+CFGRI=1" to enable this function. Normally RI will keep high level until certain conditions such as receiving SMS, or a URC report coming, then it will output a low level pulse 120ms, in the end, it will become high level. Figure 15: RI behaviour (SMS and URC report) The DTR pin description: After setting the AT command "AT+CSCLK=1", and then pulling up the DTR pin, Module will enter sleep mode when module is in idle mode. In sleep mode, the UART is unavailable. When SIM7070 enters sleep mode, pulling down DTR can wake up module. www.simcom.com 28 / 72 After setting the AT command "AT+CSCLK=0", SIM7070 Series will do nothing when the DTR pin is pulling up. # NOTE For more details of AT commands about UART, please refer to document [1] and [20]. ### 3.4 USB Interface SIM7070 Series has a USB2.0 interface. It can be used for software upgrade and software debugging. The USB of the SIM7070 series only supports slave mode and does not support USB charging. USB does not support Suspend mode, the module will not be able to enter the minimum power mode when USB is connected. USB_VBUS is the detecting signal for USB inserting. The input voltage range on the USB_VBUS pin is from 3.5V to 5.25V. If there is out of this range, it may be due to USB function unidentifiable, even damaging the module. The reference circuit refers to the following figure. Figure 16: USB reference circuit Because of the high speed on USB bus, more attention should be paid to the influence of the junction capacitance of the ESD component on USB data lines. Typically, the capacitance of the D1 and D2 should be less than 3pF. www.simcom.com 29 / 72 D3 is suggested to select the diode with anti-ESD and voltage surge function, or customer could add a ZENER diode for surge clamping. Table 13: Recommended TVS models | No. | Manufacturer | Part Number | Package | | |-----|--------------|---------------|---------|--| | 1 | NXP | PESD5V0X1BCAL | 0402 | | | 2 | Willsemi | ESD5301N | 0402 | | | 3 | NXP | PESD5V0H1BSF | 0201 | | | 4 | Willsemi | ESD5311Z-2/TR | 0201 | | # NOTE The USB interface is strongly recommended to reserve test points. The USB_DM and USB_DP nets must be traced by 90Ohm+/-10% differential impedance. # 3.5 Force USB Download Interface The module can enter the USB forced download mode with pulling up the BOOT_CFG pin. The reference circuit refers to the following figure. Figure 17: Reference circuit of BOOT_CFG interface www.simcom.com 30 / 72 ### 3.6 SIM Interface SIM7070 Series only supports 1.8V SIM Cards. SIM_VDD is provided by LDO inside the module, the default value is 1.8V. Table 14: SIM electronic characteristic in 1.8V mode (SIM_VDD=1.8V) | Symbol | Parameter | Min. | Тур. | Max. | Unit | |---------|---------------------------|---------------|------|--------------|------| | SIM_VDD | LDO power output voltage | 1.75 | 1.8 | 1.95 | V | | VIH | High-level input voltage | 0.65*SIM_VDD | _ | SIM_VDD +0.3 | V | | VIL | Low-level input voltage | -0.3 | 0 | 0.35*SIM_VDD | V | | Vон | High-level output voltage | SIM_VDD -0.45 | _ | SIM_VDD | V | | Vol | Low-level output voltage | 0 | 0 | 0.45 | V | #### NOTE - 1. The module does not support 3V SIM card. - 2. The software does not support the SIM card hot swap function. # 3.6.1 SIM Application Guide Note that the SIM peripheral circuit should be close to the SIM card socket. The following figure shows the 6-pin SIM card holder reference circuit. Figure 18: SIM interface reference circuit SIM_DATA has been pulled up with a 20KR resistor to SIM_VDD in module, so it no need pulled up resistor anymore. SIM_VDD needs a 100nF capacitor close to SIM socket. SIM_CLK is very important signal, the rise time and fall time of SIM_CLK should be less than 40ns. So the junction capacity of the TVS need to less 50pF. In order to enhance the reliability and availability of the (U)SIM card in applications. Please follow the www.simcom.com 31 / 72 guidelines below when designing. - It is recommended to place a 100nF capacitor on the SIM_VDD signal line
close to the SIM card holder. - Place TVS near the SIM card holder. The junction capacity of the TVS should not exceed 50pF. The 22Ω resistor in series between the SIM card holder and the module can enhance the ESD protection performance. - Keep SIM card signals away from RF and VBAT traces. - SIM card signal line traces to avoid branch. - To avoid cross-talk between SIM_DATA and SIM_CLK, keep them away from each other and shield them with surrounded ground. USIM_RST should also be ground shielded. ### 3.7 PCM Interface SIM7070 Series provides a PCM interface for external codec, which can be used in master mode with short sync and 16 bits linear format. **Table 15: PCM format** | Characteristics | Specification | |-----------------------|--------------------| | Line Interface Format | Linear(Fixed) | | Data length | 16bits(Fixed) | | PCM Clock/Sync Source | Master Mode(Fixed) | | PCM Clock Rate | 2048 KHz (Fixed) | | PCM Sync Format | Short sync(Fixed) | | Data Ordering | MSB | #### NOTE For more details about PCM AT commands, please refer to document [1]. # 3.7.1 PCM timing SIM7070 Series supports 2.048 MHz PCM data and sync timing for 16 bits linear format codec. Figure 19: PCM_SYNC timing www.simcom.com 32 / 72 Figure 20: External codec to module timing Figure 21: Module to external codec timing **Table 16: PCM timing parameters** | Parameter | Description | Min. | Тур. | Max. | Unit | |-----------|---|------|-------|------|------------| | T(sync) | PCM_SYNC cycle time | _ | 125 | _ | μ S | | T(synch) | PCM_SYNC high level time | _ | 488 | _ | ns | | T(syncl) | PCM_SYNC low level time | _ | 124.5 | _ | μ S | | T(clk) | PCM_CLK cycle time | _ | 488 | _ | ns | | T(clkh) | PCM_CLK high level time | _ | 244 | _ | ns | | T(clkl) | PCM_CLK low level time | _ | 244 | _ | ns | | T(susync) | PCM_SYNC setup time high before falling edge of PCM_CLK | _ | 122 | _ | ns | | T(hsync) | PCM_SYNC hold time after falling edge of PCM_CLK | _ | 366 | _ | ns | | T(sudin) | PCM_IN setup time before falling edge of PCM_CLK | 60 | _ | _ | ns | | T(hdin) | PCM_IN hold time after falling edge of PCM_CLK | 60 | _ | _ | ns | | T(pdout) | Delay from PCM_CLK rising to PCM_OUT valid | _ | _ | 60 | ns | | T(zdout) | Delay from PCM_CLK falling to PCM_OUT HIGH-Z | _ | _ | 60 | ns | www.simcom.com 33 / 72 # 3.7.2 PCM Application Guide The following figure shows the external codec reference design. Figure 22: Audio codec reference circuit # 3.8 I2C Interface SIM7070 Series provides anI2C interface with clock rate up to 400 kbps. Its operation voltage is 1.8V. The following figure shows the I2C bus reference design. Figure 23: I2C reference circuit The I2C signal has no pull-up resistors in module. So the pulling up resistors 1K Ω to VDD_EXT is necessary in application circuit. www.simcom.com 34 / 72 ### 3.9 SPI Interface SIM7070 Series supports a set of 4-wire (MISO, MOSI, CS and CLK) SPI interface. The default function of the SPI interface is GPIO. The SPI function is only available in software secondary development. The SPI supports both master mode and slave mode. The maximum clock frequency is up to 50MHz when operating in SPI master mode and up to 25MHz when operating in SPI Slave mode. The SPI function of SIM7070 series is multiplexed by GPIO1, GPIO2, GPIO3 and GPIO5. Table 17 describes the multiplex function of the SPI. Table 17: Multiplex function of the SPI | Pin No. | Pin Name | multiplex function | |---------|----------|--------------------| | 19 | GPIO1 | SPI_MOSI | | 20 | GPIO2 | SPI_MISO | | 21 | GPIO3 | SPI_CLK | | 48 | GPIO5 | SPI_CS | # NOTE The GPIO1(19 pin) function is FAST BOOT function before system boot-up, so the level on this pin cannot be high before the system boot-up, otherwise the module will not start normally. The following figure shows the SPI bus reference design. Figure 24: SPI master mode circuit www.simcom.com 35 / 72 Figure 25: SPI slave mode circuit # 3.10 Network status The NETLIGHT pin is used to control Network Status LED, its reference circuit is shown in the following figure. Figure 26: NETLIGHT reference circuit ### NOTE The value of the resistor named "R" depends on the LED characteristic. www.simcom.com 36 / 72 Table 18: NETLIGHT pin status | NETLIGHT pin status | Module status | |---------------------|--| | 64ms ON, 800ms OFF | No registered network | | 64ms ON, 3000ms OFF | Registered network (PS domain registration success) | | 64ms ON, 300ms OFF | Data transmit (PPP dial-up state and use of data services such as internal TCP/FTP/HTTP) | | OFF | Power off or PSM mode | #### NOTE NETLIGHT output low level as "OFF" and high level as "ON". ## 3.11 ADC interface SIM7070 Series module provides a 10-bit high sample rate (ADC) interfaces. It is available fordigitizing analog signals such as battery voltage and so on. Its input voltage range is from 0V to 1.8v. That is the maximum measurement range of ADC cannot exceed 1.8V. If the input voltage of ADC PIN exceeds its range, it is necessary to implement the resistance partial pressure on the hardware. The electronic specifications are shown in the following table. Table 19: ADC electronic characteristics | Characteristics | Min. | Тур. | Max. | Unit | |---------------------------|------|------|-------|------| | Input Range | 0 | | 1.875 | V | | Internal pull-up resistor | | 400 | | ΚΩ | | Input serial resistance | 1 | _ | _ | MΩ | #### NOTE "AT+CADC" can be used to read the voltage of the ADC pin, for more details, please refer to document [1]. ## 3.12 LDO output SIM7070 Series has a LDO power output namedVDD_EXT. The output voltage is 1.8V. This voltage can only be pulled up for the external GPIO or power supply for the level conversion circuit. www.simcom.com 37 / 72 Figure 27: Power on sequence of the VDD_EXT ## **Table 20: Electronic characteristic** | Symbol | Description | Min. | Тур. | Max. | Unit | |----------|----------------|------|------|------|------| | VVDD_EXT | Output voltage | 1.75 | 1.8 | 1.85 | V | | IO | Output current | - | - | 50 | mA | ## NOTE The VDD_EXT is used to the IO power in the module. The Output voltage is not supported to adjust. www.simcom.com 38 / 72 # 4.RF Specifications # **4.1 LTE RF Specifications** Table 21: Conducted transmission power GSM | | GSM850, I | EGSM900 | | | |-------|----------------------------|-------------------------------|---------|--| | DCI. | Naminal autaut nawar (dPm) | Tolerance (dB) for conditions | | | | PCL | Nominal output power (dBm) | Normal | Extreme | | | 5 | 33 | ±2 | ±2.5 | | | 6 | 31 | ±3 | ±4 | | | 7 | 29 | ±3 | ±4 | | | 8 | 27 | ±3 | ±4 | | | 9 | 25 | ±3 | ±4 | | | 10 | 23 | ±3 | ±4 | | | 11 | 21 | ±3 | ±4 | | | 12 | 19 | ±3 | ±4 | | | 13 | 17 | ±3 | ±4 | | | 14 | 15 | ±3 | ±4 | | | 15 | 13 | ±3 | ±4 | | | 16 | 11 | ±5 | ±6 | | | 17 | 9 | ±5 | ±6 | | | 18 | 7 | ±5 | ±6 | | | 19-31 | 5 | ±5 | ±6 | | | | DCS1800/PCS1900 | | | | | | |-----|----------------------------|----------------|----------------|--|--|--| | PCL | Naminal output nawar (dRm) | Tolerance (dB) | for conditions | | | | | PCL | Nominal output power (dBm) | Normal | Extreme | | | | | 0 | 33 | ±2 | ±2.5 | | | | | 1 | 31 | ±3 | ±4 | | | | | 2 | 29 | ±3 | ±4 | | | | | 3 | 27 | ±3 | ±4 | | | | | 4 | 25 | ±3 | ±4 | | | | | 5 | 23 | ±3 | ±4 | | | | | 6 | 21 | ±3 | ±4 | | | | | 7 | 19 | ±3 | ±4 | | | | www.simcom.com 39 / 72 | 8 | 17 | ±3 | ±4 | |----|----|----|----| | 9 | 15 | ±3 | ±4 | | 10 | 13 | ±3 | ±4 | | 11 | 11 | ±5 | ±6 | | 12 | 9 | ±5 | ±6 | | 13 | 7 | ±5 | ±6 | | 14 | 5 | ±5 | ±6 | ## CAT-NB2 | Frequency | Power | Min. | |-------------|----------------|---------| | LTE-FDD B1 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B2 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B3 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B4 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B5 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B8 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B12 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B13 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B18 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B19 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B20 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B25 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B26 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B28 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B31 | 26dBm +/-2.7dB | <-40dBm | | LTE-FDD B66 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B71 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B85 | 20dBm +/-2.7dB | <-40dBm | ## CAT-M1 | Frequency | Power | Min. | |-------------|----------------|---------| | LTE-FDD B1 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B2 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B3 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B4 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B5 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B8 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B12 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B13 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B14 | 20dBm +/-2.7dB | <-40dBm | www.simcom.com 40 / 72 | LTE-FDD B18 | 20dBm +/-2.7dB | <-40dBm | |-------------|-------------------|---------| | LTE-FDD B19 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B20 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B25 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B26 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B27 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B28 | 20dBm +2.7/-3.2dB | <-40dBm | | LTE-FDD B31 | 26dBm +/-2.7dB | <-40dBm | | LTE-FDD B66 | 20dBm +/-2.7dB | <-40dBm | | LTE-FDD B72 | 26dBm +/-2.7dB | <-40dBm | | LTE-FDD B85 | 20dBm +/-2.7dB | <-40dBm | | | | | ### NOTE The max power is tested result for 1RB in CAT-M1 and single-tone in CAT-NB2. MPR for CAT-M1 please refer to 6.2.3EA.5 part for 3GPP. Multi-tone test results please refer to part 6.2.3F.3 for CAT-NB2. Table 22: Maximum Power Reduction (MPR) for UE category NB&M1 Power Class 5 CAT-NB1/CAT-NB2 | Modulation | | QPSK | | |---------------------------------------|---------------|-------------|---------------| | Tone positions for 3 Tones
allocation | 0-2 | 3-5 and 6-8 | 9-11 | | MPR | \leq 0.5 dB | 0 dB | \leq 0.5 dB | | Tone positions for 3 Tones allocation | 0-5 and 6-11 | | | | MPR | ≤ ' | 1 dB | ≤ 1 dB | | Tone positions for 3 Tones allocation | 0-11 | | | | MPR | ≤ 2 dB | | | ### CAT-M1 | | Channel bandwidth / Transmission bandwidth (NRB) | | | | | | | |------------|--|------------|----------|-----------|-----------|-----------|----------| | Modulation | 1.4
MHz | 3.0
MHz | 5
MHz | 10
MHz | 15
MHz | 20
MHz | MPR (dB) | | QPSK | >2 | >2 | >3 | >5 | - | - | ≤ 1 | | QPSK | >5 | >5 | - | - | - | - | ≤ 2 | | 16 QAM | ≤ 2 | ≤ 2 | >3 | >5 | - | - | ≤ 1 | | 16QAM | >2 | >2 | >5 | _ | - | _ | ≤ 2 | www.simcom.com 41 / 72 ### NOTE For each sub-frame, the MPR is calculated per slot and is given by the maximum value transmitted within the slot; then the maximum MPR on both slots is applied to the entire sub-frame. **Table 23: Operating frequencies** | Frequency | Receiving | Transmission | |---------------------------|------------------------|---------------| | EGSM900 | 925∼960MHz | 880∼915 MHz | | GSM800 | 869~894MHz | 824~849MHz | | DCS1800 | 1805∼1880 MHz | 1710∼1785 MHz | | PCS1900 | 1930~1990MHz | 1850~1910MHz | | LTE BAND Information 【Ref | fers to Table 1】 | | | GPS L1 BAND | 1574.4~1576.44 MHz | - | | GLONASS | 1598.0625 ~1605.375MHz | - | | BDS | 1559.052~1591.788MHz | - | | Galileo | 1574.4~1576.44 MHz | - | Table 24: E-UTRA operating bands | E-UTRA | UL Freq. | DL Freq. | Duplex Mode | |--------|----------------|----------------|-------------| | 1 | 1920 ~1980 MHz | 2110 ~2170 MHz | HD-FDD | | 2 | 1850~1910MHz | 1930~1990MHz | HD-FDD | | 3 | 1710 ~1785 MHz | 1805 ~1880 MHz | HD-FDD | | 4 | 1710~1755MHz | 2110~2155 | HD-FDD | | 5 | 824 ~849 MHz | 869 ~894 MHz | HD-FDD | | 8 | 880 ~915 MHz | 925 ~960 MHz | HD-FDD | | 12 | 699~716MHz | 729~746MHz | HD-FDD | | 13 | 777~787MHz | 746~756MHz | HD-FDD | | 14 | 788~798MHz | 758~768MHz | HD-FDD | | 18 | 815 ~830 MHz | 860 ~875 MHz | HD-FDD | | 19 | 830 ~845 MHz | 875 ~890 MHz | HD-FDD | | 20 | 832~862MHz | 791~821MHz | HD-FDD | | 25 | 1850~1915MHz | 1930~1995MHz | HD-FDD | | 26 | 814 ~849 MHz | 859 ~894 MHz | HD-FDD | | 27 | 807~824MHz | 852~869MHz | HD-FDD | | 28 | 703~748MHz | 758~803MHz | HD-FDD | | 31 | 452.5~457.5MHz | 462.5~467.5MHz | HD-FDD | | 66 | 1710~1780MHz | 2110~2180MHz | HD-FDD | | 71 | 663~698MHz | 617~652MHz | HD-FDD | www.simcom.com 42 / 72 | 72 | 451~456MHz | 461~466MHz | HD-FDD | |----|--------------|------------|--------| | 85 | 698~716MHzHz | 728~746MHz | HD-FDD | Table 25: Conducted receive sensitivity | | , | | |------------|-----------------------------------|--------------------------| | Frequency | Receive sensitivity(Typical)voice | Receive sensitivity(MAX) | | EGSM900 | 107.9dBm | 3GPP | | GSM850 | 108.2dBm | 3GPP | | DCS1800 | 107.5dBm | 3GPP | | PCS1900 | 107.2dBm | 3GPP | | LTE HD-FDD | Reference 【Table26】 【Table27】 | | Table 26: CAT-M1 Reference sensitivity (QPSK) | | REFSENS | SIM7070G | SIM7070E | SIM7070G-NG | - Duplex | |----------------|--------------------------|-----------------------------|-----------------------------|--------------------------|----------| | E-UTRA
Band | MAX(dBm)
3GPP Request | REFSENS
Typical
(dBm) | REFSENS
Typical
(dBm) | REFSENS
Typical (dBm) | Mode | | 1 | -103 | -108.1 | -108.4 | NA | HD-FDD | | 2 | -101 | -106.2 | -106.6 | NA | HD-FDD | | 3 | -100 | -107.5 | -107.3 | NA | HD-FDD | | 4 | -103 | -106.5 | -106.2 | NA | HD-FDD | | 5 | -101.5 | -108.2 | -108.8 | NA | HD-FDD | | 8 | -100.5 | -106.1 | -106.5 | NA | HD-FDD | | 12 | -100 | -107.4 | -107.3 | NA | HD-FDD | | 13 | -100 | -105.5 | -106.1 | NA | HD-FDD | | 14 | -100 | -106.5 | -107.3 | NA | HD-FDD | | 18 | -103 | -108.5 | -109.5 | NA | HD-FDD | | 19 | -103 | -108.1 | -108.8 | NA | HD-FDD | | 20 | -100.5 | -108.3 | -107.8 | NA | HD-FDD | | 25 | -99.5 | -103.2 | -103.8 | NA | HD-FDD | | 26 | -101 | -108.1 | -108.3 | NA | HD-FDD | | 27 | -101.5 | -106.2 | -106.8 | NA | HD-FDD | | 28 | -101.5 | -108.2 | -108.8 | NA | HD-FDD | | 31 | -97.3 | -102.4 | -105.7 | NA | HD-FDD | | 66 | NA | -108.5 | -108.4 | NA | HD-FDD | | 72 | NA | -102.4 | -105.7 | NA | HD-FDD | | 85 | -100 | -109.1 | -109.4 | NA | HD-FDD | www.simcom.com 43 / 72 Table 27: CAT-NB2Reference sensitivity (QPSK) | Operating
bands | REFSENS
MAX(dBm)
3GPP
Request | REFS
ENS
Typica
I(dBm) | M7070G REFSENS Typical Repetition 12/ 7/1/128 [EPRE dbm/15KH z] [©] | REFS
ENS
Typica
I(dBm) | M7070E REFSENS Typical Repetition 12/ 7/1/128 [EPRE dbm/15KH z] [©] | REFS
ENS
Typica
I(dBm) | 7070G-NG REFSENS Typical Repetition 12/ 7/1/128 [EPRE dbm/15KH z] [©] | |--------------------|--|---------------------------------|--|---------------------------------|--|---------------------------------|--| | 1 | -108.2 | -115.1 | -131 | -115.1 | -131 | -115.1 | -131 | | 2 | -108.2 | -114.8 | -130 | -114.8 | -130 | -114.8 | -130 | | 3 | -108.2 | -115.4 | -131 | -115.4 | -131 | -115.4 | -131 | | 4 | -108.2 | -115.1 | -130 | -115.1 | -130 | -115.1 | -130 | | 5 | -108.2 | -114.3 | -129 | -114.3 | -129 | -114.3 | -129 | | 8 | -108.2 | -113.9 | -130 | -113.9 | -130 | -113.9 | -130 | | 12 | -108.2 | -116 | -130 | -116 | -130 | -116 | -130 | | 13 | -108.2 | -115.7 | -130 | -115.7 | -130 | -115.7 | -130 | | 18 | -108.2 | -114.9 | -129 | -114.9 | -129 | -114.9 | -129 | | 19 | -108.2 | -115.1 | -128 | -115.1 | -128 | -115.1 | -128 | | 20 | -108.2 | -114.1 | -128 | -114.1 | -128 | -114.1 | -128 | | 25 | -108.2 | -114.6 | -130 | -114.6 | -130 | -114.6 | -130 | | 26 | -108.2 | -114.6 | -129 | -114.6 | -129 | -114.6 | -129 | | 28 | -108.2 | -115.9 | -130 | -115.9 | -130 | -115.9 | -130 | | 31 | -108.2 | | | -114.7 | -129 | | | | 66 | -108.2 | -114.8 | -129 | -114.8 | -129 | -114.8 | -129 | | 71 | -108.2 | -114.4 | -129 | | | -114.4 | -129 | | 85 | -108.2 | -115.7 | -130 | -115.7 | -130 | -115.7 | -130 | ### NOTE The 12/7/1/128 of the REFSENS Typical Repeated 12/ 7/1/128 means Subcarriers=12, MCS.TBS=7, #SF/#RU=1, #Repetition=128. # 4.2 LTE Antenna Design Guide www.simcom.com 44 / 72 Users should connect antennas to SIM7070 Series antenna pads through micro-strip line or other types of RF trace and the trace impedance must be controlled in 50_{Ω} . SIMCom recommends that the total insertion loss between the antenna pads and antennas should meet the following requirements: Table 28: Trace loss | Frequency | Loss | |-----------------|--------| | 700MHz-960MHz | <0.5dB | | 1710MHz-2170MHz | <0.9dB | | 2300MHz-2650MHz | <1.2dB | To facilitate the antenna tuning and certification test, a RF connector and an antenna matching circuit should be added. The following figure is the recommended circuit. Figure 28: Antenna matching circuit (MAIN_ANT) In above figure, the components R1, C1, C2 and R2 are used for antenna matching, the values of components can only be achieved after the antenna tuning and usually provided by antenna vendor. By default, the R1, R2 are 0Ω resistors, and the C1, C2 are reserved for tuning. The component D1 is a TVS for ESD protection, and it is optional for users according to application environment. The RF test connector is used for the conducted RF performance test, and should be placed as close as to the module's MAIN_ANT pin. The traces impedance between SIM7070 Series and antenna must be controlled in 50Ω . Two TVS are recommended in the table below. Table 29: Recommended TVS | Package | Part Number | Vender | |---------|----------------|--------| | 0201 | LXES03AAA1-154 | Murata | | 0402 | LXES15AAA1-153 | Murata | ### **4.3 GNSS** www.simcom.com 45 / 72 SIM7070 Series merges GNSS (GPS/GLONASS/BD/Galileo) satellite and network information to provide a high-availability solution that offers industry-leading accuracy and performance. This solution performs well, even in very challenging environmental conditions where conventional GNSS receivers fail, and provides a platform to enable wireless operators to address both location-based services and emergency mandates. ## 4.3.1 GNSS Technical specification Tracking sensitivity: -159 dBm (GPS+GLONASS)/-159 dBm (GPS+BD) Cold-start sensitivity: -147.5 dBm Accuracy (Open Sky): 0.4 m(GPS+BD) TTFF (Open Sky) : Hot start < 1 s, Cold start < 31 s</p> Receiver Type: 16-channel, C/A Code GPS L1 Frequency: 1575.42±1.023MHz GLONASS L1: 1598.0625 ~1605.375MHz BDS B1: 1559.052~1591.788MHz Galileo L1:1575.42±1.023MHz Update rate: Default 1 Hz GNSS data format: NMEA-0183 GNSS Current consumption :54mA (AT+CFUN=0,without USB) GNSS antenna: Passive/Active antenna #### NOTE If the antenna is active type, the power should be given by main board because there is no power supply on the GNSS antenna pad. If the antenna is passive, it is suggested that the external LNA should be used. ## 4.3.2 GNSS Application Guide Users can adopt an active antenna or a passive antenna to SIM7070 Series. If using a passive antenna, an external LNA is a must to get better performance. The following figures are the reference circuits. Figure 29: Active antenna circuit www.simcom.com 46 / 72 Figure 30: Passive antenna circuit (Default) In above figures, the components C1, L1 and L2 are used for antenna matching. Usually, the values of the components can only be achieved after antenna tuning and usually provided by antenna vendor.C2 is used for DC blocking. L3 is the matching component of the external LNA, and the value of L3 is determined by the LNA characteristic and PCB layout. Both VDD of active antenna and V_LNA need external power supplies which should be considered according to active antenna and LNA
characteristic. LDO/DCDC is recommended to get lower current consuming by shutting down active antennas and LNA when GNSS is not working. GNSS can be tested by NMEA port. NMEA sentences can be obtained through UART or USB automatically. NMEA sentences include GSV, GGA, RMC, GSA, and VTG. Before using GNSS, user should configure SIM7070 Series in proper operating mode by AT command. Please refer to related documents for details. SIM7070 Series can also get position location information through AT directly. #### NOTE - 1. GNSS is closed by default and can be started by "AT+CGNSPWR=1". The AT command has two parameters, the first is on/off, and the second is GNSS mode. Default mode is standalone mode. AGPS mode needs more support from the mobile telecommunication network. Please refer to document [21] for more details. - 2. If the passive antenna is used, put the LNA close to the antenna. - 3. Make sure there are no noise signals around GNSS antenna. ### 4.4 RF traces note ### 4.4.1 RF traces layout - Keep the RF trace from module ant pin to antenna as short as possible - \triangleright RF trace should be 50 Ω either on the top layer or in the inner layer - > RF trace should be avoided right angle and sharp angle. - > Put enough GND vias around RF traces. - RF trace should be far away from other high speed signal lines. www.simcom.com 47 / 72 Figure 31: RF trace should be far away from other high speed signal lines - Avoiding the paroling rout of other system antennas nearly. - > There should be some distance from The GND to the inner conductor of the SMA connector. It is better to keep out all the layers from inner to the outer conductor. Figure 32: The distance between GND to the inner conductor of SMA > GND pads around the ANT pad should not be hot pad to keep the GND complete. www.simcom.com 48 / 72 ## 4.4.2 LTE ANT and other system ANT decoupling - Make sure the efficiency of LTE main ANT more than 40% - Keep the decoupling of LTE main ANT to WLAN ANT more than 15dB - ➤ Keep the decoupling of LTE main ANT to GNSS ANT more than 30dB ### NOTE The decoupling value can be provided by ANT adventure. More details can refer to the document [22]. www.simcom.com 49 / 72 # ■ 5. Electrical Specifications # 5.1 Absolute maximum ratings Absolute maximum rating for digital and analog pins of SIM7070 Series are listed in the following table: Table 30: Absolute maximum ratings | Parameter | Min. | Тур. | Max. | Unit | |---|------|------|-------|------| | Voltage on VBAT | -0.3 | - | 6.0 | V | | Voltage on USB_VBUS | -0.3 | - | 6.0 | V | | Voltage at digital pins (RESET,GPIO,I2C,UART,PCM) | -0.3 | - | 2.1 | V | | Voltage at PWRKEY | -0.3 | - | 2.1 | V | | ADC | -0.3 | - | 1.875 | V | #### **NOTE** The absolute parameter is tested when VBAT has the power but the PWRKEY has no pulled down. If it is over the range, the module will be damage. If the power supply on VBAT pin had been shut down, and the other pin should not have the voltage. Otherwise, it may lead to abnormally boot up or damage the module. # 5.2 Operating conditions Table 31: 1.8V Digital I/O characteristics* | Parameter | Description | Min. | Тур. | Max. | Unit | |-----------|--|------|------|------|------| | VIH | High-level input voltage | 1.17 | 1.8 | 2.1 | V | | VIL | Low-level input voltage | -0.3 | 0 | 0.63 | V | | VOH | High-level output voltage | 1.35 | - | 1.8 | V | | VOL | Low-level output voltage | 0 | - | 0.45 | V | | IOH | High-level output current(no pull down resistor) | - | 2 | - | mA | | IOL | Low-level output current(no pull up resistor) | _ | -2 | - | mA | | IIH | Input high leakage current (no | _ | - | 1 | uA | www.simcom.com 50 / 72 | | pull down resistor) | | | | | |-----|--|----|---|---|----| | IIL | Input low leakage current(no pull up resistor) | -1 | - | _ | uA | ### NOTE These parameters are for digital interface pins, such as GPIOs (including NETLIGHT and STATUS), I2C, UART, PCM, SPI and BOOT_CFG. Table 32: Recommended operating ratings | Parameter | | Min. | Тур. | Max. | Unit | |---------------------|-------------|------|------|------|------| | | SIM7070G | 3.0 | 3.8 | 4.6 | V | | Voltage at VBAT | SIM7070E | 3.2 | 3.8 | 4.2 | | | | SIM7070G-NG | 3.0 | 3.8 | 4.6 | V | | Voltage at USB_VBUS | | 3.5 | 5.0 | 5.25 | V | The operating temperature of SIM7070 Series is listed in the following table. **Table 33: Operating temperature** | Parameter | Min. | Тур. | Max. | Unit | |-----------------------|------|------|------|----------------------| | operation temperature | -40 | 25 | 85 | $^{\circ}\mathbb{C}$ | | Storage temperature | -45 | 25 | +90 | $^{\circ}\mathbb{C}$ | #### NOTE Module is able to make and receive voice calls, data calls, SMS and make GPRS/LTE traffic in -40 $^{\circ}$ C ~ +85 $^{\circ}$ C. The performance will be reduced slightly from the 3GPP specifications if the temperature is outside the normal operating temperature range and still within the extreme operating temperature range. # **5.3 Operating Mode** ## 5.3.1 Operating Mode Definition The table below summarizes the various operating modes of SIM7070 Series product. www.simcom.com 51 / 72 **Table 34: Operating mode Definition** | Mode | | Function | | |----------------------------|-------------------|--|--| | | Sleep | In this case, the current consumption of module will be reduced to the minimal level and the module can still receive paging message and SMS. | | | Nor | Idle | Software is active. Module is registered to the network, and the module is ready to communicate. | | | mal op | Cat-M1 Voice Call | Connection between two subscribers is in progress. In this case, the power consumption depends on network settings. | | | Normal operation | Standby | Module is ready for data transmission, but no data is currently sent or received. In this case, power consumption depends on network settings. | | | | Data transmission | There is data transmission in progress. In this case, power consumption is related to network settings (e.g. power control level); uplink/downlink data rates, etc. | | | Minimum functionality mode | | AT command "AT+CFUN=0" and "AT+CSCLK=1"can be used to set the module to a minimum functionality mode without removing the power supply. In this mode, the RF part of the module will not work and the SIM card will not be accessible, but the serial port and USB port are still accessible. The power consumption in this mode is lower than normal mode. | | | Flight mode | | AT command "AT+CFUN=4" can be used to set the module to flight mode without removing the power supply. In this mode, the RF part of the module will not work, but the serial port and USB port are still accessible. The power consumption in this mode is lower than normal mode. | | | Power Saving Mode (PSM) | | Setting AT command" AT+CPSMS=1" can be enable the PSM mode. In this mode, The mode is similar to power-off. But the module remains registered on the network and there is no need to re-attach or re-establish the network connections. And all of the functions will be unavailable except the RTC function. PWRKEY and timer expires can wake up the module. | | | Extended Mode DRX (e-DRX) | | In idle or sleep mode, module and the network may negotiate over non-access stratum signaling the use of extended mode DRX for reducing power consumption. | | ## 5.3.2 Sleep mode Module can enter into sleep mode for reducing its power consumption in idle module. In sleep mode, the current consumption of module will be reduced to very small level, and module can still receive paging message and SMS. www.simcom.com 52 / 72 Several hardware and software conditions must be satisfied together in order to let SIM7070 Series enter sleep mode: - USB condition: Connected USB can't enter into sleep mode. So if module wants to enter into sleep mode, it must disconnect the power supply for USB VBUS first. - Software condition: If module wants to enter into sleep mode, AT comment "AT+CSCLK=1" must be set to close some clock in the module. If the value "AT+CSCLK" is "0", module will never enter into sleep mode. - UART condition: If module wants to enter into sleep mode, AT comment "AT+CSCLK=1" must be set to close some clock in the module. If the value "AT+CSCLK" is "0", module will never enter into sleep mode If it meets all the conditions at the same time, module will enter into sleep mode. In sleep mode, the UART is unavailable. If the host need to communicate with module, it need to pull down DTR can wake up module. ## 5.3.3 Minimum functionality mode and Flight mode Minimum functionality mode ceases a majority function of the module, thus minimizing the power consumption. This mode is set by the AT command which provides a choice of the functionality levels. - AT+CFUN=0: Minimum functionality - AT+CFUN=1: Full functionality (Default) - AT+CFUN=4: Flight mode If SIM7070 Series has been set to minimum functionality mode, the RF function and SIM card function will be closed. In this case, the serial port and USB are still accessible, but RF function and SIM card will be unavailable. If SIM7070 Series has been set to flight mode, the RF function will be closed. In this case, the serial port and USB are still accessible, but RF function will be unavailable. When SIM7070 Series is in minimum functionality or flight mode, it can return to full functionality by the AT command "AT+CFUN=1". ## 5.3.4 Power Saving Mode (PSM) SIM7070 Series module can enter into PSM for reducing its power consumption. The mode is similar to
power-off, but the module remains registered on the network and there is no need to re-attach or re-establish the network connections. So in PSM all the functions will be unavailable except the RTC function, module cannot immediately respond users' requests. When the module wants to use the PSM, it can be enabled via "AT+CPSMS=1" command. The command takes effect after module reboot. If the network supports PSM and accepts that the module uses PSM, the network confirms usage of PSM by allocating an Active Time value to the module. Module will be into PSM according to the command from network. www.simcom.com 53 / 72 Either of the following methods will wake up the module from PSM: - Pulling PWRKEY pin to low level will wake up the module. - When the timer expires, the module will be automatically woken up. ### 5.3.5 Extended Mode DRX (e-DRX) In idle or sleep mode, module and the network may negotiate over non-access stratum signaling the use of extended mode DRX for reducing power consumption. E-DRX diagrammatic sketch refer to the following figure. Figure 33: e-DRX diagrammatic sketch When module and the network negotiate stratum signaling in idle mode or sleep mode, extended mode DRX can decrease the times of paging time window (PTW) and increase the cycle length. For this reason it had reduced the times of DRX, and had reduced the frequency of DRX between module and the network. So that can reduce power consumption for module. If e-DRX is supported by the network, then it can be enabled by "AT+CEDRXS" command. #### NOTE For details about "AT+CEDRXS", please refer to Document [1] ## **5.4 Current Consumption** The current consumption is listed in the table below. Table 35: Current consumption on VBAT Pins (VBAT=3.8V) #### **GNSS** www.simcom.com 54 / 72 | GNSS supply current (AT+CFUN=0,without USB connection) | Tracking, typical:54mA | | |--|--|---| | Idle mode | | | | LTE supply current (AT+CSCLK=0; AT+CFUN=1, GNSS off, without USB connection) | GSM
CAT-M1
NB1/NB2 | typical:12mA
typical: 18mA
typical:14mA | | Sleep mode | | | | GSM supply current (AT+CSCLK=1; AT+CFUN=1, GNSS off, without USB connection) | GSM | typical:2.1mA | | GSM supply current (AT+CSCLK=1; AT+CFUN=0, GNSS off, without USB connection) | GSM | typical:0.45mA | | Power SavingMode | | | | PSM supply current | PSM mode Typical: 3.5u | ıA | | e-DRX | | | | e-DRX mode supply current (Tested in sleep mode) | @PTW=40.96s; eDRX=
Typical:0.6mA
@PTW=25.6s; eDRX=7
Typical:0.4mA | | | GPRSdata transmission | | | | EGSM850(3DL,2UL) | @power class #5Typical:369mA | | | DCS1800(3DL,2UL) | @power class #0Typical | l:274mA | | EGSM 850(1DL,4UL) | @power class #5Typical:500mA | | | DCS1800 (1DL,4UL) | @power class #0Typical | I:401mA | | EDGEdata transmission | | | | EGSM850(3DL,2UL) | @power class #5 Typica | al: 210mA | | DCS1800(3DL,2UL) | @power class #0 Typica | al:172mA | | EGSM 850(1DL,4UL) | @power class #5 Typica | al: 311mA | | DCS1800 (1DL,4UL) | @power class #0 Typica | ıl: 285mA | | LTE Cat-M (10MHz) data transmiss | ion | | | LTE-FDD B1 | @21dbm Typical: 116m/
@10dbm Typical: 103m/
@0dbm Typical: 91mA | | | LTE-FDD B2 | @21dbm Typical: 115mA
@10dbm Typical: 102mA
@0dbm Typical:90mA | | | LTE-FDD B3 | @21dbm Typical: 114mA
@10dbm Typical: 102mA
@0dbm Typical: 90mA | | | LTE-FDD B4 | @21dbm Typical: 114mA
@10dbm Typical: 102mA
@0dbm Typical:91mA | | www.simcom.com 55 / 72 | Carte May Died: 117mA | | | |--|--------------|-------------------------| | @0dbm Typical: 90mA | | | | @21dbm Typical: 117mA | LTE-FDD B5 | | | LTE-FDD B8 | | | | @0dbm Typical: 91mA | | | | Q21dbm Typical: 116mA | LTE-FDD B8 | | | LTE-FDD B12 | | | | @0dbm Typical: 90mA | | | | @21dbm Typical: 118mA @10dbm Typical: 101mA @0dbm Typical: 101mA @0dbm Typical: 119mA @21dbm Typical: 119mA @10dbm Typical: 101mA @0dbm Typical: 117mA @10dbm Typical: 100mA @0dbm Typical: 100mA @0dbm Typical: 100mA @0dbm Typical: 117mA LTE-FDD B18 @10dbm Typical: 101mA @0dbm Typical: 118mA LTE-FDD B20 @10dbm Typical: 118mA LTE-FDD B25 @10dbm Typical: 115mA @21dbm Typical: 116mA @21dbm Typical: 116mA @10dbm Typical: 100mA @0dbm Typical: 100mA @0dbm Typical: 100mA @0dbm Typical: 101mA @0dbm Typical: 101mA @0dbm Typical: 101mA @0dbm Typical: 100mA @0dbm Typical: 100mA @0dbm Typical: 100mA @0dbm Typical: 100mA @0dbm Typical: 116mA LTE-FDD B28 @10dbm Typical: 116mA @11dbm Typical: 116mA @10dbm 117mA | LTE-FDD B12 | | | LTE-FDD B13 | | | | @0dbm Typical: 93mA | | | | ### Company of the co | LTE-FDD B13 | | | LTE-FDD B14 @10dbm Typical: 90mA @0dbm Typical: 90mA @21dbm Typical: 117mA @10dbm Typical: 101mA @0dbm Typical: 101mA @0dbm Typical: 118mA @10dbm Typical: 118mA @10dbm Typical: 118mA @10dbm Typical: 115mA @10dbm Typical: 115mA @10dbm Typical: 115mA @10dbm Typical: 116mA @10dbm Typical: 116mA @10dbm Typical: 116mA LTE-FDD B25 @10dbm Typical: 116mA @10dbm Typical: 117mA @10dbm Typical: 118mA @17dbm Typical: 118mA LTE-FDD B28 @10dbm Typical: 116mA @21dbm Typical: 118mA 131mA @3dbm Typical: 131mA @3dbm Typical: 131mA @3dbm Typical: 138mA @27dbm Typical: 348mA LTE-FDD B72 @1TE-FDD B75 @21dbm Typical: 138mA @3dbm Typical: 138mA @3dbm Typical: 138mA @3dbm Typical: 138mA @3dbm Typical: 172mA | | | | @0dbm Typical: 90mA | | | | @21dbm Typical: 117mA | LTE-FDD B14 | | | LTE-FDD B18 @10dbm Typical: 100mA @0dbm Typical: 117mA @10dbm Typical: 101mA @0dbm Typical: 101mA @0dbm Typical: 118mA @21dbm Typical: 118mA @21dbm Typical: 118mA @21dbm Typical: 118mA @21dbm Typical: 115mA @0dbm Typical: 91mA @21dbm Typical: 115mA @10dbm Typical: 115mA @10dbm Typical: 115mA @10dbm Typical: 116mA @0dbm Typical: 116mA @21dbm Typical: 116mA @10dbm Typical: 110mA @0dbm Typical: 110mA @0dbm Typical: 110mA @0dbm Typical: 117mA LTE-FDD B26 @10dbm Typical: 101mA @0dbm Typical: 101mA @0dbm Typical: 100mA @0dbm Typical: 131mA @17dbm Typical: 135mA @8dbm Typical: 137mA @21dbm Typical: 131mA @0dbm Typical: 134mA @27dbm Typical: 134mA @27dbm Typical: 138mA @27dbm Typical: 138mA @8dbm Typical: 138mA @8dbm Typical: 138mA @8dbm Typical: 138mA @8dbm Typical: 138mA | | | | @0dbm Typical: 90mA | 1== === = 10 | | | @21dbm Typical: 117mA | LTE-FDD B18 | | | LTE-FDD B19 @10dbm Typical: 90mA @21dbm Typical: 118mA @10dbm Typical: 111mA @0dbm Typical: 111mA @0dbm Typical: 111mA @0dbm Typical: 115mA @21dbm Typical: 115mA @21dbm Typical: 115mA LTE-FDD B25 @10dbm Typical: 102mA @0dbm Typical: 116mA LTE-FDD B26 @10dbm Typical: 116mA LTE-FDD B27 @10dbm Typical: 110mA @0dbm Typical: 100mA @0dbm Typical: 101mA @0dbm Typical: 101mA @0dbm Typical: 101mA @0dbm Typical: 116mA LTE-FDD B28 @10dbm Typical: 116mA LTE-FDD B28 @10dbm Typical: 116mA @10dbm Typical: 13mA @27dbm Typical: 135mA @8dbm Typical: 137mA @21dbm Typical: 131mA @21dbm Typical: 133mA @21dbm Typical: 133mA @21dbm Typical: 138mA @8dbm | | | | @0dbm Typical: 90mA | 175 500 040 | | | @21dbm Typical: 118mA | LTE-FDD B19 | | | LTE-FDD B20 @10dbm Typical: 101mA @0dbm Typical: 91mA @21dbm Typical: 115mA @10dbm Typical: 102mA @0dbm Typical: 91mA @21dbm Typical: 91mA @21dbm Typical: 91mA ### ### ### ### ### ### ### ### ### # | | | | @0dbm Typical: 91mA | | | | @21dbm Typical: 115mA @10dbm Typical: 102mA @0dbm Typical: 91mA @21dbm Typical: 116mA @10dbm Typical: 100mA @0dbm Typical: 100mA @0dbm Typical: 100mA @0dbm Typical: 117mA LTE-FDD B27 @10dbm Typical: 101mA @0dbm Typical: 101mA @0dbm Typical: 100mA @0dbm Typical: 100mA @0dbm Typical: 91mA LTE-FDD B28 @10dbm Typical: 345mA @27dbm Typical: 185mA @8dbm Typical: 137mA @21dbm Typical: 167mA @10dbm Typical: 131mA @0dbm Typical: 131mA @0dbm Typical: 131mA @0dbm Typical: 133mA @27dbm Typical: 348mA LTE-FDD B72 @17dbm Typical: 138mA @27dbm Typical: 138mA @27dbm Typical: 138mA @21dbm Typical: 138mA @21dbm Typical: 138mA |
LTE-FDD B20 | | | ## Company of | | | | @0dbm Typical: 91mA @21dbm Typical: 116mA @10dbm Typical: 100mA @0dbm Typical: 90mA @21dbm Typical: 101mA @21dbm Typical: 101mA @0dbm Typical: 90mA @21dbm Typical: 101mA @0dbm Typical: 90mA @21dbm Typical: 90mA @21dbm Typical: 18mA @21dbm Typical: 16mA LTE-FDD B28 @10dbm Typical: 91mA @27dbm Typical: 345mA @17dbm Typical: 185mA @8dbm Typical: 137mA @21dbm Typical: 137mA @10dbm Typical: 131mA @0dbm Typical: 103mA @27dbm Typical: 103mA @27dbm Typical: 348mA @17dbm Typical: 178mA @8dbm Typical: 138mA @8dbm Typical: 138mA @8dbm Typical: 138mA @8dbm Typical: 172mA | 175 500 000 | | | @21dbm Typical: 116mA @10dbm Typical: 100mA @0dbm Typical: 90mA @21dbm Typical: 117mA LTE-FDD B27 @10dbm Typical: 101mA @0dbm Typical: 101mA @0dbm Typical: 116mA LTE-FDD B28 @10dbm Typical: 116mA @21dbm Typical: 110mA @0dbm Typical: 110mA @0dbm Typical: 110mA @0dbm Typical: 18mA @0dbm Typical: 345mA @27dbm Typical: 185mA @8dbm Typical: 137mA LTE-FDD B66 @10dbm Typical: 131mA @0dbm Typical: 131mA @0dbm Typical: 103mA @27dbm Typical: 348mA @27dbm Typical: 348mA @27dbm Typical: 138mA @8dbm Typical: 138mA @8dbm Typical: 138mA @8dbm Typical: 138mA | LTE-FDD B25 | | | LTE-FDD B26 @ 10dbm Typical: 100mA @0dbm Typical: 90mA @ 21dbm Typical: 117mA @ 10dbm Typical: 101mA @0dbm Typical: 90mA @ 21dbm Typical: 100mA @0dbm Typical: 116mA @ 21dbm Typical: 116mA @ 10dbm Typical: 100mA @0dbm Typical: 91mA @ 27dbm Typical: 345mA @ 17dbm Typical: 185mA @ 8dbm Typical: 137mA @ 21dbm Typical: 167mA @ 10dbm Typical: 131mA @ 0dbm Typical: 103mA @ 27dbm Typical: 348mA LTE-FDD B72 @ 17dbm Typical: 178mA @ 21dbm Typical: 138mA LTE-FDD B85 | | | | @0dbm Typical:90mA @21dbm Typical: 117mA @10dbm Typical: 101mA @0dbm Typical:90mA @21dbm Typical:116mA @21dbm Typical: 116mA @21dbm Typical: 100mA @0dbm Typical: 91mA @0dbm Typical: 345mA @17dbm Typical: 185mA @8dbm Typical: 137mA @21dbm Typical: 167mA UTE-FDD B66 @10dbm Typical: 131mA @0dbm Typical: 131mA @0dbm Typical: 1348mA LTE-FDD B72 @17dbm Typical: 178mA @21dbm Typical: 178mA @21dbm Typical: 178mA @21dbm Typical: 138mA | LTE EDD DOG | | | @21dbm Typical: 117mA | LIE-FDD B26 | 21 | | ### LTE-FDD B27 @ 10dbm Typical: 101mA @ 0dbm Typical: 90mA @ 21dbm Typical: 116mA #### ################################ | | | | @0dbm Typical:90mA @21dbm Typical: 116mA LTE-FDD B28 @10dbm Typical: 100mA @0dbm Typical: 91mA @27dbm Typical: 345mA @17dbm Typical: 185mA @8dbm Typical: 137mA @21dbm Typical: 167mA LTE-FDD B66 @10dbm Typical: 131mA @0dbm Typical: 103mA @27dbm Typical: 348mA LTE-FDD B72 @17dbm Typical: 172mA | LTE EDD D07 | | | @21dbm Typical: 116mA @10dbm Typical: 100mA @0dbm Typical: 91mA @27dbm Typical: 345mA LTE-FDD B31 @17dbm Typical: 185mA @8dbm Typical: 137mA @21dbm Typical: 167mA LTE-FDD B66 @10dbm Typical: 131mA @0dbm Typical: 103mA @27dbm Typical: 348mA LTE-FDD B72 @17dbm Typical: 138mA @8dbm Typical: 138mA @21dbm Typical: 138mA @21dbm Typical: 172mA | LIE-FDD B27 | | | LTE-FDD B28 @10dbm Typical: 100mA @0dbm Typical: 91mA @27dbm Typical: 345mA @17dbm Typical: 185mA @8dbm Typical: 137mA @21dbm Typical: 167mA LTE-FDD B66 @10dbm Typical: 131mA @0dbm Typical: 103mA @27dbm Typical: 348mA LTE-FDD B72 @17dbm Typical: 178mA @8dbm Typical: 138mA @21dbm Typical: 172mA | | | | @0dbm Typical: 91mA @27dbm Typical: 345mA LTE-FDD B31 @17dbm Typical: 185mA @8dbm Typical: 137mA @21dbm Typical: 167mA LTE-FDD B66 @10dbm Typical: 131mA @0dbm Typical: 103mA @27dbm Typical: 348mA LTE-FDD B72 @17dbm Typical: 178mA @8dbm Typical: 138mA @21dbm Typical: 172mA | LTE EDD DOO | | | @27dbm Typical: 345mA @17dbm Typical: 185mA @8dbm Typical:137mA @21dbm Typical: 167mA LTE-FDD B66 @10dbm Typical: 131mA @0dbm Typical: 103mA @27dbm Typical: 348mA LTE-FDD B72 @17dbm Typical: 348mA @27dbm Typical: 178mA @8dbm Typical: 138mA @8dbm Typical: 138mA @21dbm Typical: 172mA | LTE-FDD B28 | | | LTE-FDD B31 @17dbm Typical: 185mA @8dbm Typical: 137mA @21dbm Typical: 167mA @10dbm Typical: 131mA @0dbm Typical: 103mA @27dbm Typical: 348mA LTE-FDD B72 @17dbm Typical: 178mA @8dbm Typical: 138mA @21dbm Typical: 172mA | | | | @8dbm Typical:137mA @21dbm Typical: 167mA @10dbm Typical: 131mA @0dbm Typical: 103mA @27dbm Typical: 348mA LTE-FDD B72 @17dbm Typical:178mA @8dbm Typical: 138mA @21dbm Typical: 172mA | LTE EDD DO4 | | | @21dbm Typical: 167mA LTE-FDD B66 @10dbm Typical: 131mA @0dbm Typical: 103mA @27dbm Typical: 348mA LTE-FDD B72 @17dbm Typical:178mA @8dbm Typical: 138mA @21dbm Typical: 172mA | LIE-FDD B31 | 71 | | LTE-FDD B66 @10dbm Typical: 131mA @0dbm Typical: 103mA @27dbm Typical: 348mA LTE-FDD B72 @17dbm Typical:178mA @8dbm Typical: 138mA @21dbm Typical: 172mA | | | | @0dbm Typical: 103mA @27dbm Typical: 348mA LTE-FDD B72 @17dbm Typical:178mA @8dbm Typical: 138mA @21dbm Typical: 172mA | LTE EDD DCC | | | @27dbm Typical: 348mA LTE-FDD B72 @17dbm Typical:178mA @8dbm Typical: 138mA @21dbm Typical: 172mA | LIE-FUU B00 | | | LTE-FDD B72 @17dbm Typical:178mA @8dbm Typical: 138mA UTE-FDD B85 @21dbm Typical: 172mA | | | | @8dbm Typical: 138mA @21dbm Typical: 172mA | LTE EDD D70 | | | LTE-EDD B85 @21dbm Typical: 172mA | LIE-FUU B12 | | | 1 (F-FI)() B85 | | | | @Tudbiti Typicai: 126mA | LTE-FDD B85 | | | | | ш точитт турісат. т20ПА | www.simcom.com 56 / 72 | ### Company | | @0dbm Typical:103mA | |--|-------------|-----------------------| | LTE-FDD B1 | | 9 | | LTE-FDD B1 | | @21dbm Typical: 137mA | | @0dbm Typical: 55mA | LTE-FDD B1 | | | ## Body | | | | ### Company of | | | | ### Company of the Co | LTE-FDD B2 | | | ### Company of the Co | | | | LTE-FDD B3 @10dbm Typical: 87mA @0dbm Typical: 141mA LTE-FDD B4 @10dbm Typical: 86mA @0dbm Typical: 85mA @0dbm Typical: 85mA @0dbm Typical: 146mA LTE-FDD B5 @10dbm Typical: 80mA @0dbm Typical: 80mA @0dbm Typical: 83mA @0dbm Typical: 83mA @0dbm Typical: 80mA @0dbm Typical: 80mA @0dbm Typical: 80mA @0dbm Typical: 80mA @0dbm Typical: 143mA LTE-FDD B8 @10dbm Typical: 82mA @0dbm Typical: 139mA LTE-FDD B12 @10dbm Typical: 78mA @0dbm Typical: 153mA LTE-FDD B13 @10dbm Typical: 83mA @0dbm Typical: 82mA @0dbm Typical: 82mA @0dbm Typical: 147mA LTE-FDD B18 @10dbm Typical: 147mA LTE-FDD B19 @0dbm Typical: 80mA @0dbm Typical: 80mA @0dbm Typical: 83mA @0dbm Typical: 83mA @0dbm Typical: 83mA @0dbm Typical: 85mA @0dbm Typical: 80mA @0dbm Typical: 80mA @0dbm Typical: 80mA @0dbm Typical: 80mA @0dbm Typical: 814mA LTE-FDD B20 @10dbm Typical: 147mA LTE-FDD B20 @10dbm Typical: 81mA @0dbm Typical: 82mA @21dbm Typical: 82mA @21dbm Typical: 84mA @0dbm Typical: 87mA @0dbm Typical: 87mA @0dbm Typical: 84mA @0dbm Typical: 84mA @0dbm Typical: 147mA LTE-FDD B26 @21dbm Typical: 147mA LTE-FDD B26 @21dbm Typical: 147mA LTE-FDD B26 @21dbm Typical: 84mA @0dbm Typical: 84mA @0dbm Typical: 84mA @0dbm Typical: 147mA LTE-FDD B26 @21dbm Typical: 147mA LTE-FDD B26 | | | | @0dbm Typical: 53mA | LTE-FDD B3 | | | @21dbm Typical: 141mA | | | | LTE-FDD B4 @10dbm Typical: 86mA @0dbm Typical: 53mA @21dbm Typical: 146mA @10dbm Typical: 80mA @0dbm Typical: 53mA @10dbm Typical: 80mA @0dbm Typical: 143mA LTE-FDD B8 @10dbm Typical: 80mA @0dbm Typical: 52mA @21dbm Typical: 139mA LTE-FDD B12 @10dbm Typical: 78mA @0dbm Typical: 51mA @21dbm Typical: 51mA @21dbm Typical: 55mA LTE-FDD B13 @10dbm Typical: 83mA @0dbm Typical: 83mA @0dbm Typical: 147mA LTE-FDD B18 @10dbm Typical: 53mA @10dbm Typical: 53mA @21dbm Typical: 53mA @21dbm Typical: 53mA @10dbm Typical: 53mA @21dbm Typical: 147mA LTE-FDD B19 @10dbm Typical: 147mA LTE-FDD B20 @10dbm Typical: 147mA LTE-FDD B20 @10dbm Typical: 147mA @10dbm Typical: 147mA @10dbm Typical: 140mA @0dbm Typical: 55mA @21dbm 54mA @20dbm Typical: 54mA @21dbm Typical: 54mA | | | | @0dbm Typical: 53mA @21dbm Typical: 146mA @10dbm Typical: 80mA @0dbm Typical: 53mA @21dbm Typical: 53mA @21dbm Typical: 80mA @0dbm Typical: 80mA @10dbm Typical: 80mA @10dbm Typical: 80mA @0dbm Typical: 52mA @21dbm Typical: 139mA LTE-FDD B12 @10dbm Typical: 78mA @0dbm Typical: 51mA @21dbm Typical: 51mA @21dbm Typical: 83mA @0dbm
Typical: 83mA @0dbm Typical: 80mA @0dbm Typical: 80mA @0dbm Typical: 55mA LTE-FDD B18 @10dbm Typical: 80mA @0dbm Typical: 147mA LTE-FDD B19 @10dbm Typical: 80mA @0dbm Typical: 53mA &21dbm Typical: 147mA LTE-FDD B20 @10dbm Typical: 81mA @0dbm Typical: 147mA LTE-FDD B25 @10dbm Typical: 140mA @0dbm Typical: 52mA @0dbm Typical: 54mA @0dbm Typical: 54mA @0dbm Typical: 54mA @0dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA @0dbm Typical: 54mA @0dbm Typical: 54mA @0dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA @0dbm Typical: 54mA @0dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA @0dbm Typical: 81mA @0dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA @0dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA @0dbm | LTE-FDD B4 | | | @21dbm Typical: 146mA | | | | LTE-FDD B5 | | | | @0dbm Typical: 53mA | LTE-FDD B5 | | | LTE-FDD B8 @ 10dbm Typical: 80mA @ 0dbm Typical: 52mA @ 21dbm Typical: 139mA LTE-FDD B12 @ 10dbm Typical: 78mA @ 0dbm Typical: 51mA @ 21dbm Typical: 153mA LTE-FDD B13 @ 10dbm Typical: 83mA @ 0dbm Typical: 52mA @ 21dbm Typical: 52mA @ 21dbm Typical: 417mA LTE-FDD B18 @ 10dbm Typical: 80mA @ 0dbm Typical: 53mA | | @0dbm Typical: 53mA | | LTE-FDD B8 @ 10dbm Typical: 80mA @ 0dbm Typical: 52mA @ 21dbm Typical: 139mA LTE-FDD B12 @ 10dbm Typical: 78mA @ 0dbm Typical: 51mA @ 21dbm Typical: 153mA LTE-FDD B13 @ 10dbm Typical: 83mA @ 0dbm Typical: 52mA @ 21dbm Typical: 52mA @ 21dbm Typical: 417mA LTE-FDD B18 @ 10dbm Typical: 80mA @ 0dbm Typical: 53mA | | | | Q21dbm Typical: 139mA | LTE-FDD B8 | @10dbm Typical: 80mA | | Q21dbm Typical: 139mA | | | | @Odbm Typical: 51mA @21dbm Typical: 153mA LTE-FDD B13 @10dbm Typical: 83mA @0dbm Typical: 52mA @21dbm Typical: 147mA LTE-FDD B18 @10dbm Typical: 80mA @0dbm Typical: 53mA LTE-FDD B19 @10dbm Typical: 80mA @0dbm Typical: 53mA @21dbm Typical: 53mA @21dbm Typical: 147mA LTE-FDD B20 @10dbm Typical: 81mA @0dbm Typical: 52mA @21dbm Typical: 140mA LTE-FDD B25 @10dbm Typical: 87mA @0dbm Typical: 54mA @21dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA | | | | @21dbm Typical: 153mA @10dbm Typical: 83mA @0dbm Typical: 52mA @21dbm Typical: 147mA LTE-FDD B18 @10dbm Typical: 80mA @0dbm Typical: 53mA LTE-FDD B19 @10dbm Typical: 80mA @0dbm Typical: 53mA @21dbm Typical: 147mA LTE-FDD B20 @10dbm Typical: 81mA @0dbm Typical: 52mA Weldbm Typical: 140mA LTE-FDD B25 @10dbm Typical: 87mA @0dbm Typical: 54mA Weldbm Typical: 147mA LTE-FDD B26 Weldbm Typical: 81mA | LTE-FDD B12 | | | ### LTE-FDD B13 @ 10dbm Typical: 83mA @ 0dbm Typical: 52mA @ 21dbm Typical: 147mA #################################### | | @0dbm Typical: 51mA | | @0dbm Typical: 52mA @21dbm Typical: 147mA @10dbm Typical: 80mA @0dbm Typical: 53mA @21dbm Typical: 147mA LTE-FDD B19 @10dbm Typical: 80mA @0dbm Typical: 53mA @21dbm Typical: 147mA LTE-FDD B20 @10dbm Typical: 81mA @0dbm Typical: 52mA @21dbm Typical: 140mA LTE-FDD B25 @10dbm Typical: 87mA @0dbm Typical: 54mA @21dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA | | @21dbm Typical: 153mA | | @21dbm Typical: 147mA @10dbm Typical: 80mA @0dbm Typical: 53mA @21dbm Typical: 147mA LTE-FDD B19 @10dbm Typical: 80mA @0dbm Typical: 80mA @0dbm Typical: 53mA @21dbm Typical: 53mA @21dbm Typical: 54mA @10dbm Typical: 52mA @21dbm Typical: 140mA LTE-FDD B25 @10dbm Typical: 87mA @0dbm Typical: 54mA @21dbm Typical: 54mA @21dbm Typical: 54mA @21dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA | LTE-FDD B13 | @10dbm Typical: 83mA | | LTE-FDD B18 @10dbm Typical: 80mA @0dbm Typical: 53mA @21dbm Typical: 147mA LTE-FDD B19 @10dbm Typical: 80mA @0dbm Typical: 53mA @21dbm Typical: 147mA LTE-FDD B20 @10dbm Typical: 81mA @0dbm Typical: 52mA @21dbm Typical: 140mA LTE-FDD B25 @10dbm Typical: 87mA @0dbm Typical: 54mA @21dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA | | @0dbm Typical: 52mA | | @0dbm Typical: 53mA @21dbm Typical: 147mA LTE-FDD B19 @0dbm Typical: 80mA @0dbm Typical: 53mA @21dbm Typical: 53mA @10dbm Typical: 147mA LTE-FDD B20 @10dbm Typical: 81mA @0dbm Typical: 52mA @21dbm Typical: 140mA LTE-FDD B25 @10dbm Typical: 87mA @0dbm Typical: 54mA @21dbm Typical: 54mA @21dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA | | @21dbm Typical: 147mA | | @21dbm Typical: 147mA @10dbm Typical: 80mA @0dbm Typical: 53mA @21dbm Typical: 147mA LTE-FDD B20 @10dbm Typical: 81mA @0dbm Typical: 52mA @21dbm Typical: 140mA LTE-FDD B25 @10dbm Typical: 87mA @0dbm Typical: 54mA @21dbm Typical: 54mA @21dbm Typical: 147mA @10dbm Typical: 81mA | LTE-FDD B18 | @10dbm Typical: 80mA | | LTE-FDD B19 @10dbm Typical: 80mA @0dbm Typical: 53mA @21dbm Typical: 147mA LTE-FDD B20 @10dbm Typical: 81mA @0dbm Typical: 52mA @21dbm Typical: 140mA LTE-FDD B25 @10dbm Typical: 87mA @0dbm Typical: 54mA @21dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA | | @0dbm Typical: 53mA | | @0dbm Typical: 53mA @21dbm Typical: 147mA LTE-FDD B20 @10dbm Typical: 81mA @0dbm Typical: 52mA @21dbm Typical: 140mA LTE-FDD B25 @10dbm Typical: 87mA @0dbm Typical: 54mA @21dbm Typical: 147mA @10dbm Typical: 81mA | | @21dbm Typical: 147mA | | @21dbm Typical: 147mA @10dbm Typical: 81mA @0dbm Typical: 52mA @21dbm Typical: 140mA LTE-FDD B25 @10dbm Typical: 87mA @0dbm Typical: 54mA @21dbm Typical: 147mA @21dbm Typical: 81mA | LTE-FDD B19 | @10dbm Typical: 80mA | | LTE-FDD B20 @10dbm Typical: 81mA @0dbm Typical: 52mA @21dbm Typical: 140mA LTE-FDD B25 @10dbm Typical: 87mA @0dbm Typical: 54mA @21dbm Typical: 147mA @21dbm Typical: 81mA | | @0dbm Typical: 53mA | | @0dbm Typical: 52mA @21dbm Typical: 140mA LTE-FDD B25 @10dbm Typical: 87mA @0dbm Typical: 54mA @21dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA | | @21dbm Typical: 147mA | | @21dbm Typical: 140mA LTE-FDD B25 @10dbm Typical: 87mA @0dbm Typical: 54mA @21dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA | LTE-FDD B20 | | | LTE-FDD B25 @10dbm Typical: 87mA @0dbm Typical: 54mA @21dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA | | | | @0dbm Typical: 54mA @21dbm Typical: 147mA LTE-FDD B26 @10dbm Typical: 81mA | | | | @21dbm Typical: 147mA
LTE-FDD B26 @10dbm Typical: 81mA | LTE-FDD B25 | | | LTE-FDD B26 @10dbm Typical: 81mA | | @0dbm Typical: 54mA | | | | | | | LTE-FDD B26 | @10dbm Typical: 81mA | | @0dbm Typical: 53mA | | | | @21dbm Typical: 143mA | | | | LTE-FDD B28 @10dbm Typical: 81mA | LTE-FDD B28 | | | @0dbm Typical: 53mA | | | | @26dbm Typical: 302mA | | | | LTE-FDD B31 @17dbm Typical: 185mA | LTE-FDD B31 | | | @8dbm Typical:120mA | | @8dbm Typical:120mA | www.simcom.com 57 / 72 | | @21dbm Typical: 141mA | |-------------|-----------------------| | LTE-FDD B66 | @10dbm Typical: 87mA | | | @0dbm Typical: 53mA | | | @21dbm Typical: 133mA | | LTE-FDD B71 | @10dbm Typical: 76mA | | | @0dbm Typical: 64mA | | | @21dbm Typical: 141mA | | LTE-FDD B85 | @10dbm Typical: 78mA | | | @0dbm Typical: 51mA | ## 5.5 ESD Notes SIM7070 Series is sensitive to ESD in the process of storage, transporting, and assembling. WhenSIM7070 Series is mounted on the users' mother board, the ESD components should be placed beside the connectors which human body may touch, such as SIM card holder, audio jacks, switches, keys, etc. The following table showsSIM7070 Series ESD measurement performance without any external ESD component. Table 36: The ESD performance measurement table (Temperature: 25℃, Humidity: 45%.) | Part | Contact discharge | Air discharge | |--------------|-------------------|---------------| | VBAT,GND | +/-6K | +/-12K | | Antenna port | +/-5K | +/-10K | | Other PADs | +/-1K | +/-3K | www.simcom.com 58 / 72 # 6.SMT Production Guide # 6.1 Top and Bottom View of SIM7070 Series Figure 34: Top and bottom view of SIM7070 Seri ## 6.2 Label Information Figure 35: Label information www.simcom.com 59 / 72 Table 37: The description of label information | No. | Description | |-----|---| | А | LOGO,No.1 Pin | | В | Project name | | С | Product code | | D | Serial number | | Е | International mobile equipment identity | | F | QR code | # 6.3 Typical SMT Reflow Profile SIMCom provides a typical soldering profile. Therefore the soldering profile shown below is only a generic recommendation and should be adjusted to the specific application and manufacturing constraints. Figure 36: The ramp-soak-spike reflow profile of SIM7070 Series ### NOTE For more details about secondary SMT, please refer to the document [19]. # 6.4 Moisture Sensitivity Level (MSL) SIM7070 Series is qualified to Moisture Sensitivity Level (MSL) 3 in accordance with JEDEC J-STD-033. The following table shows the features of Moisture Sensitivity Level (MSL). After seal off, storage conditions must meet the following table. If the storage time was expired, module must be baking before SMT. www.simcom.com 60 / 72 Table 38: Moisture Sensitivity Level and Floor Life | Moisture Sensitivity
Level (MSL) | Floor Life (out of bag) at factory ambient≤30°C/60% RH or as stated | |-------------------------------------|--| | 1 | Unlimited at ≦30°C/85% RH | | 2 | 1 year at ≤30°C/60% RH | | 2a | 4 weeks at ≤30°C/60% RH | | 3 | 168 hours at ≦30°C/60% RH | | 4 | 72 hours at ≦30°C/60% RH | | 5 | 48 hours at ≦30°C/60% RH | | 5a | 24 hours at ≦30°C/60% RH | | 6 | Mandatory bake before use. After bake, it must be reflowed within the time limit specified on the label. | # 6.5 Baking In order to get better yield, the module need to bake before SMT. - If the packaging is in perfect condition, the module which dateofproduction is within six months has no use for baking. If the dateofproduction is more thansix months, the module must be baking. - If the packaging had been opened or damaged, the module must be baking. Table 39: Baking conditions | conditions | parameters | |--------------------|--------------| | Baking temperature | 120 ℃ | | Baking time | 8 hours | #### NOTE IPC / JEDEC J-STD-033standard must be followed for production and storage. # 6.6 Stencil Foil Design Recommendation The recommended
thickness of stencil foil is 0.15mm. www.simcom.com 61 / 72 SMT stencil outline (Unit:mm) Figure 37: stencil recommendation (Unit: mm) www.simcom.com 62 / 72 # 7.Packaging # 7.1 Tray packaging SIM7070 Series module support tray packaging. Figure 38: packaging diagram Module tray drawing: Figure 39: Tray drawing www.simcom.com 63 / 72 Table 40: Tray size | Length (±3mm) | Width (±3mm) | Module number | |---------------|--------------|---------------| | 242.0 | 161.0 | 20 | ## Small carton drawing: Figure 40: Small carton drawing **Table 41: Small Carton size** | Length (±10mm) | Width (±10mm) | Height (±10mm) | Module number | |----------------|---------------|----------------|---------------| | 270 | 180 | 120 | 20*20=400 | Big carton drawing: www.simcom.com 64 / 72 Figure 41: Big carton drawing Table 42: Big Carton size | Length (±10mm) | Width (±10mm) | Height (±10mm) | Module number | |----------------|---------------|----------------|---------------| | 380 | 280 | 280 | 400*4=1600 | www.simcom.com 65 / 72 # 8.Appendix # A. Reference Design Refer to <SIM7070 Series Reference Design V1.01> for the details. Figure 42: Reference design # B. Design check list **Table 43: Schematic Check List** | NO. | Items | |-----|--| | 1 | Insure the supply voltage for VBAT is withintherange | www.simcom.com 66 / 72 | 2 | Insure the maximum supply current for VBAT is above its consumption when it is maximum power emission. | |---------|---| | 3 | Insure the capacitor for VBAT is meet its request, in order to avoid the voltage drop exceed 300mV. | | 4 | Insure the input signal for PWRKEY pin meet its electrical level match. It recommended use BJT to shift its level. | | 5 | Insure the netconnections of UART be correctness according to signal direction. Insure the signal for UART pins meet its electrical level match. It recommended use BJT or level shift IC to shift its level. | | 6 | Insure USB port had used TVS to protect signal. And the junction capacity of TVS for DP/DM must be less than 3pf. | | 7 | Insure SIM card signal had used TVS to protect. And the junction capacity of TVS must be less than 50pf. | | 8 | The power supply of the active antenna should be controlled and closed. | | 9 | Insure I2C signal had used resistors 1Kohm pull up to VDD_EXT if used. | | 10 | The electrical level of all GPIOs is 1.8V. Insure the signal for GPIO pins meet its electrical level match. | | 11 | The input range of ADC is 0V~1.875V. Insure the input signal never exceed its range. | | 12 | User must pull up DTR when module enters into sleep mode. Insure DTR can be controlled by host. | | 13 | Suggesting to reserve test ports for VDD_EXT and BOOT_CFG. BOOT_CFG should keep open before boot up. | | 14 | LTE main ANT should Keep TVS to prevent ESD destroyed. And the TVS should be Low junction capacitance. | | 15 | LTE main ANT should have a PI type matching to debug antenna | | Table 4 | 44: PCB Layout Check List | Table 44: PCB Layout Check List | NO. | Items | |-----|--| | 1 | Insure the capacitor placement for VBAT be near module pin. | | 2 | Insure VBAT trace width be greater than 2mm. If NB only, insure VBAT trace width be greater than 1mm. And the VIA number must be enough for getting through the current. | | 3 | Insure the return path GND of the power supply is good. Insure the connectivity between module GND and mother board GND is good. | | 4 | Insure PCM trance is protected by GND, and keep it far from interference source, such as power supply trace, USB trace, RF trace and so on. | | 5 | Insure USB trance is protected by GND, and keep it far from interference source, such as power supply trace, RF trace and so on. Insure DM/DP trace is differential routing, and differential impedance is 90 ohm. | | 6 | Insure ADC trance is protected by GND. | | 7 | Insure SIM card signal trance is protected by GND. Especially SIM_CLK must be protected alone. And avoid signal trace branched Routing. | | 8 | Insure TVS avoid bypass. The trace must go through TVS pad first, and then arrived module pad. | | 9 | There should be enough ground around the RF line. RF lines Routing prohibit right angles and sharp angles, trying to trace circular or obtuse angle line. | | 10 | The RF line reference GND should be complete. And avoid high speed lines crossing below it. | | 11 | the GND side of the RF output pin should be non hot welding disk | | 12 | The routing which is RF output PIN to antenna should be isolated from other high-speed lines. And the routing should be 50Ω impedance control. | www.simcom.com 67 / 72 # C. Coding Schemes and Maximum Net Data Rates over Air Interface Table 45: Coding Schemes and Maximum Net Data Rates over Air Interface | Slot class | Channel defintion(GPRS/EDGE) | | | | |--|------------------------------|---------------|----------------|--------------------| | 1 1 1 2 2 1 3 3 1 4 5 2 2 4 6 3 2 4 7 3 3 4 8 4 1 5 9 3 2 5 10 4 2 5 11 4 3 5 12 4 4 5 GPRS coding scheme Max data rata (4 slots) Modulation type CS 1 = 9.05 kb/s / time slot 36.2 kb/s GMSK CS 2 = 13.4 kb/s / time slot 36.2 kb/s GMSK CS 2 = 13.4 kb/s / time slot 56.4 kb/s GMSK CS 3 = 15.6 kb/s / time slot 66.4 kb/s GMSK CS 4 = 21.4 kb/s / time slot 85.6 kb/s GMSK CS 4 = 21.4 kb/s / time slot 65.2 kb/s GMSK MCS 1 = 8.8 kb/s / time slot 44.8 kb/s GMSK MCS 2 = 11.2 kb/s / time slot 44.8 kb/s GMSK | Slot class | | UL slot number | Active slot number | | 3 2 2 3 4 3 1 4 5 2 2 4 6 3 2 4 7 3 3 4 8 4 1 5 9 3 2 5 10 4 2 5 11 4 3 5 12 4 4 5 GPRS coding scheme Max data rata (4 slots) Modulation type CS 1 = 9.05 kb/s / time slot 36.2 kb/s GMSK CS 2 = 13.4 kb/s / time slot 53.6 kb/s GMSK CS 2 = 13.4 kb/s / time slot 62.4 kb/s GMSK CS 4 = 21.4 kb/s / time slot 62.4 kb/s GMSK CS 4 = 21.4 kb/s / time slot 85.6 kb/s GMSK EDGE coding scheme Max data rata (4 slots) Modulation type MCS 1 = 8.8 kb/s/ time slot 44.8 kb/s GMSK MCS 1 = 8.8 kb/s/ time slot 44.8 kb/s GMSK MCS 2 = 11.2 kb/s / t | 1 | | 1 | 2 | | 4 | 2 | 2 | 1 | 3 | | 5 2 2 4 6 3 2 4 7 3 3 4 8 4 1 5 9 3 2 5 10 4 2 5 11 4 3 5 12 4 4 5 GPRS coding scheme Max data rata (4 slots) Modulation type CS 1 = 9.05 kb/s / time slot 36.2 kb/s GMSK CS 2 = 13.4 kb/s / time slot 53.6 kb/s GMSK CS 3 = 16.6 kb/s / time slot 62.4 kb/s GMSK CS 3 = 16.6 kb/s / time slot 62.4 kb/s GMSK CS 3 = 13.4 kb/s / time slot 62.4 kb/s GMSK CS 4 = 21.4 kb/s / time slot 62.4 kb/s GMSK CS 4 = 21.4 kb/s / time slot 85.6 kb/s GMSK MCS 4 = 21.4 kb/s / time slot 35.2 kb/s GMSK MCS 2 = 11.2 kb/s / time slot 44.8 kb/s GMSK MCS 3 = 14.8 kb/s / time slot 70.4 kb/s GMSK </td <td>3</td> <td>2</td> <td>2</td> <td>3</td> | 3 | 2 | 2 | 3 | | 66 3 2 4 4 7 7 8 8 4 4 1 1 5 5 9 9 3 2 5 5 100 4 4 2 2 5 5 110 4 2 2 5 5 111 4 3 3 5 5 12 12 4 4 3 3 5 5 12 12 4 4 4 5 5 6 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 | 4 | 3 | 1 | 4 | | 77 3 3 4 8 4 1 5 9 3 2 5 10 4 2 5 11 4 3 5 12 4 4 5 GPRS coding scheme Max data rata (4 slots) Modulation type CS 1 = 9.05 kb/s / time slot 36.2 kb/s GMSK CS 2 = 13.4 kb/s / time slot 53.6 kb/s GMSK CS 3 = 15.6 kb/s / time slot 62.4 kb/s GMSK CS 3 = 15.6 kb/s / time slot 85.6 kb/s GMSK CS 4 = 21.4 kb/s / time slot 85.6 kb/s GMSK EDGE coding scheme Max data rata (4 slots) Modulation type MCS 1 = 8.8 kb/s / time slot 35.2 kb/s GMSK MCS 2 = 11.2 kb/s / time slot 35.2 kb/s GMSK MCS 2 = 11.2 kb/s / time slot 44.8 kb/s GMSK MCS 4 = 17.6 kb/s / time slot 89.6 kb/s 8PSK MCS 5 = 22.4 kb/s / time slot 118.4 kb/s 8PSK M | 5 | 2 | 2 | 4 | | 8 4 1 5 9 3 2 5 10 4 2 5 11 4 3 5 12 4 4 5 GPRS coding scheme Max data rata (4 slots) Modulation type CS 1 = 9.05 kb/s / time slot 36.2 kb/s GMSK CS 2 = 13.4 kb/s / time slot 53.6 kb/s GMSK CS 3 = 15.6 kb/s / time slot 62.4 kb/s GMSK CS 4 = 21.4 kb/s / time slot 85.6 kb/s GMSK EDGE coding scheme Max data rata (4 slots) Modulation type MCS 1 = 8.8 kb/s / time slot 35.2 kb/s GMSK MCS 2 = 11.2 kb/s / time slot 44.8 kb/s GMSK MCS 2 = 11.2 kb/s / time slot 59.2 kb/s GMSK MCS 3 = 14.8 kb/s / time slot 70.4 kb/s GMSK MCS 4 = 17.6 kb/s / time slot 89.6 kb/s 8PSK MCS 5 = 22.4 kb/s / time slot 118.4 kb/s 8PSK MCS 6 = 29.6 kb/s / time slot 179.2 kb/s 8PSK <td>6</td> <td>3</td> <td>2</td> <td>4</td> | 6 | 3 | 2 | 4 | | 9 | 7 | 3 | 3 | 4 | | 10 | 8 | 4 | 1 | 5 | | 11 | 9 | 3 | 2 | 5 | | GPRS coding
scheme Max data rata (4 slots) Modulation type CS 1 = 9.05 kb/s / time slot 36.2 kb/s GMSK CS 2 = 13.4 kb/s / time slot 53.6 kb/s GMSK CS 3 = 15.6 kb/s / time slot 62.4 kb/s GMSK CS 4 = 21.4 kb/s / time slot 85.6 kb/s GMSK EDGE coding scheme Max data rata (4 slots) Modulation type MCS 1 = 8.8 kb/s/ time slot 35.2 kb/s GMSK MCS 2 = 11.2 kb/s/ time slot 44.8 kb/s GMSK MCS 3 = 14.8 kb/s/ time slot 59.2 kb/s GMSK MCS 4 = 17.6 kb/s/ time slot 70.4 kb/s GMSK MCS 5 = 22.4 kb/s/ time slot 89.6 kb/s 8PSK MCS 6 = 29.6 kb/s/ time slot 118.4 kb/s 8PSK MCS 7 = 44.8 kb/s/ time slot 179.2 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 217.6 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 236.8 kb/s 8PSK LTE-FDD device category (Downlink) Max data rate (peak) Modulation type Category M1 300 kbps BPSK/16QAM LTE-FDD device category (Uplink) <td>10</td> <td>4</td> <td>2</td> <td>5</td> | 10 | 4 | 2 | 5 | | GPRS coding scheme Max data rata (4 slots) Modulation type CS 1 = 9.05 kb/s / time slot 36.2 kb/s GMSK CS 2 = 13.4 kb/s / time slot 53.6 kb/s GMSK CS 3 = 15.6 kb/s / time slot 62.4 kb/s GMSK CS 4 = 21.4 kb/s / time slot 85.6 kb/s GMSK EDGE coding scheme Max data rata (4 slots) Modulation type MCS 1 = 8.8 kb/s/ time slot 35.2 kb/s GMSK MCS 2 = 11.2 kb/s/ time slot 44.8 kb/s GMSK MCS 3 = 14.8 kb/s/ time slot 59.2 kb/s GMSK MCS 4 = 17.6 kb/s/ time slot 70.4 kb/s GMSK MCS 5 = 22.4 kb/s/ time slot 89.6 kb/s 8PSK MCS 6 = 29.6 kb/s/ time slot 118.4 kb/s 8PSK MCS 7 = 44.8 kb/s/ time slot 179.2 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 217.6 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 20.8 kb/s 8PSK LTE-FDD device category (Downlink) Max data rate (peak) Modulation type LTE-FDD device category (Uplink) Max data rate (peak) Modulation type | 11 | 4 | 3 | 5 | | CS 1 = 9.05 kb/s / time slot 36.2 kb/s GMSK CS 2 = 13.4 kb/s / time slot 53.6 kb/s GMSK CS 3 = 15.6 kb/s / time slot 62.4 kb/s GMSK CS 4 = 21.4 kb/s / time slot 85.6 kb/s GMSK EDGE coding scheme Max data rata (4 slots) Modulation type MCS 1 = 8.8 kb/s/ time slot 35.2 kb/s GMSK MCS 2 = 11.2 kb/s/ time slot 44.8 kb/s GMSK MCS 3 = 14.8 kb/s/ time slot 59.2 kb/s GMSK MCS 4 = 17.6 kb/s/ time slot 70.4 kb/s GMSK MCS 5 = 22.4 kb/s/ time slot 89.6 kb/s 8PSK MCS 6 = 29.6 kb/s/ time slot 118.4 kb/s 8PSK MCS 7 = 44.8 kb/s/ time slot 179.2 kb/s 8PSK MCS 8 = 54.4 kb/s/ time slot 217.6 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 236.8 kb/s 8PSK LTE-FDD device category (Downlink) Max data rate (peak) Modulation type Category NB2 20 kbps BPSK/QPSK LTE-FDD device category (Uplink) Max data rate (peak) Modulation type | 12 | 4 | 4 | 5 | | CS 2 = 13.4 kb/s / time slot 53.6 kb/s GMSK CS 3 = 15.6 kb/s / time slot 62.4 kb/s GMSK CS 4 = 21.4 kb/s / time slot 85.6 kb/s GMSK EDGE coding scheme Max data rata (4 slots) Modulation type MCS 1 = 8.8 kb/s/ time slot 35.2 kb/s GMSK MCS 2 = 11.2 kb/s/ time slot 44.8 kb/s GMSK MCS 3 = 14.8 kb/s/ time slot 59.2 kb/s GMSK MCS 4 = 17.6 kb/s/ time slot 70.4 kb/s GMSK MCS 5 = 22.4 kb/s/ time slot 89.6 kb/s 8PSK MCS 6 = 29.6 kb/s/ time slot 118.4 kb/s 8PSK MCS 7 = 44.8 kb/s/ time slot 179.2 kb/s 8PSK MCS 8 = 54.4 kb/s/ time slot 217.6 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 236.8 kb/s 8PSK LTE-FDD device category (Downlink) Max data rate (peak) Modulation type Category NB2 20 kbps BPSK/QPSK LTE-FDD device category (Uplink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM | GPRS coding scheme | Max data rata | (4 slots) | Modulation type | | CS 3 = 15.6 kb/s / time slot 62.4 kb/s GMSK CS 4 = 21.4 kb/s / time slot 85.6 kb/s GMSK EDGE coding scheme Max data rata (4 slots) Modulation type MCS 1 = 8.8 kb/s/ time slot 35.2 kb/s GMSK MCS 2 = 11.2 kb/s/ time slot 44.8 kb/s GMSK MCS 3 = 14.8 kb/s/ time slot 59.2 kb/s GMSK MCS 4 = 17.6 kb/s/ time slot 70.4 kb/s GMSK MCS 5 = 22.4 kb/s/ time slot 89.6 kb/s 8PSK MCS 6 = 29.6 kb/s/ time slot 118.4 kb/s 8PSK MCS 7 = 44.8 kb/s/ time slot 179.2 kb/s 8PSK MCS 8 = 54.4 kb/s/ time slot 217.6 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 236.8 kb/s 8PSK LTE-FDD device category (Downlink) Max data rate (peak) Modulation type Category NB2 20 kbps BPSK/QPSK LTE-FDD device category (Uplink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM | CS 1 = 9.05 kb/s / time slot | 36.2 kb/s | | GMSK | | CS 4 = 21.4 kb/s / time slot 85.6 kb/s GMSK EDGE coding scheme Max data rata (4 slots) Modulation type MCS 1 = 8.8 kb/s/ time slot 35.2 kb/s GMSK MCS 2 = 11.2 kb/s/ time slot 44.8 kb/s GMSK MCS 3 = 14.8 kb/s/ time slot 59.2 kb/s GMSK MCS 4 = 17.6 kb/s/ time slot 70.4 kb/s GMSK MCS 5 = 22.4 kb/s/ time slot 89.6 kb/s 8PSK MCS 6 = 29.6 kb/s/ time slot 118.4 kb/s 8PSK MCS 7 = 44.8 kb/s/ time slot 179.2 kb/s 8PSK MCS 8 = 54.4 kb/s/ time slot 217.6 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 236.8 kb/s 8PSK LTE-FDD device category (Downlink) Max data rate (peak) Modulation type Category M1 300 kbps BPSK/QPSK LTE-FDD device category (Uplink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM | CS 2 = 13.4 kb/s / time slot | 53.6 kb/s | | GMSK | | EDGE coding scheme Max data rata (4 slots) Modulation type MCS 1 = 8.8 kb/s/ time slot 35.2 kb/s GMSK MCS 2 = 11.2 kb/s/ time slot 44.8 kb/s GMSK MCS 3 = 14.8 kb/s/ time slot 59.2 kb/s GMSK MCS 4 = 17.6 kb/s/ time slot 70.4 kb/s GMSK MCS 5 = 22.4 kb/s/ time slot 89.6 kb/s 8PSK MCS 6 = 29.6 kb/s/ time slot 118.4 kb/s 8PSK MCS 7 = 44.8 kb/s/ time slot 179.2 kb/s 8PSK MCS 8 = 54.4 kb/s/ time slot 217.6 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 236.8 kb/s 8PSK LTE-FDD device category (Downlink) Max data rate (peak) Modulation type Category NB2 20 kbps BPSK/QPSK LTE-FDD device category (Uplink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM | CS 3 = 15.6 kb/s / time slot | 62.4 kb/s | | GMSK | | MCS 1 = 8.8 kb/s/ time slot 35.2 kb/s GMSK MCS 2 = 11.2 kb/s/ time slot 44.8 kb/s GMSK MCS 3 = 14.8 kb/s/ time slot 59.2 kb/s GMSK MCS 4 = 17.6 kb/s/ time slot 70.4 kb/s GMSK MCS 5 = 22.4 kb/s/ time slot 89.6 kb/s 8PSK MCS 6 = 29.6 kb/s/ time slot 118.4 kb/s 8PSK MCS 7 = 44.8 kb/s/ time slot 179.2 kb/s 8PSK MCS 8 = 54.4 kb/s/ time slot 217.6 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 236.8 kb/s 8PSK LTE-FDD device category (Downlink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM LTE-FDD device category (Uplink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM Category M1 300 kbps QPSK/16QAM | CS 4 = 21.4 kb/s / time slot | 85.6 kb/s | | GMSK | | MCS 2 = 11.2 kb/s/ time slot 44.8 kb/s GMSK MCS 3 = 14.8 kb/s/ time slot 59.2 kb/s GMSK MCS 4 = 17.6 kb/s/ time slot 70.4 kb/s GMSK MCS 5 = 22.4 kb/s/ time slot 89.6 kb/s 8PSK MCS 6 = 29.6 kb/s/ time slot 118.4 kb/s 8PSK MCS 7 = 44.8 kb/s/ time slot 179.2 kb/s 8PSK MCS 8 = 54.4 kb/s/ time slot 217.6 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 236.8 kb/s 8PSK LTE-FDD device category (Downlink) Max data rate (peak) Modulation type Category NB2 20 kbps BPSK/QPSK LTE-FDD device category (Uplink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM Category M1 300 kbps QPSK/16QAM | EDGE coding scheme | Max data rata | (4 slots) | Modulation type | | MCS 3 = 14.8 kb/s/ time slot 59.2 kb/s GMSK MCS 4 = 17.6 kb/s/ time slot 70.4 kb/s GMSK MCS 5 = 22.4 kb/s/ time slot 89.6 kb/s 8PSK MCS 6 = 29.6 kb/s/ time slot 118.4 kb/s 8PSK MCS 7 = 44.8 kb/s/ time slot 179.2 kb/s 8PSK MCS 8 = 54.4 kb/s/ time slot 217.6 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 236.8 kb/s 8PSK LTE-FDD device category (Downlink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM Category NB2 20 kbps BPSK/QPSK LTE-FDD device category (Uplink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM | MCS 1 = 8.8 kb/s/ time slot | 35.2 kb/s | | GMSK | | MCS 4 = 17.6 kb/s/ time slot 70.4 kb/s GMSK MCS 5 = 22.4 kb/s/ time slot 89.6 kb/s 8PSK MCS 6 = 29.6 kb/s/ time slot 118.4 kb/s 8PSK MCS 7 = 44.8 kb/s/ time slot 179.2 kb/s 8PSK MCS 8 = 54.4 kb/s/ time slot 217.6 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 236.8 kb/s 8PSK LTE-FDD device category (Downlink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM Category NB2 20 kbps BPSK/QPSK LTE-FDD device category (Uplink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM | MCS 2 = 11.2 kb/s/ time slot | 44.8 kb/s | | GMSK | | MCS 5 = 22.4 kb/s/ time slot 89.6 kb/s 8PSK MCS 6 = 29.6 kb/s/ time slot 118.4 kb/s 8PSK MCS 7 = 44.8 kb/s/ time slot 179.2 kb/s 8PSK MCS 8 = 54.4 kb/s/ time slot 217.6 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 236.8 kb/s 8PSK LTE-FDD device category (Downlink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM Category NB2 20 kbps BPSK/QPSK LTE-FDD device category (Uplink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM | MCS 3 = 14.8 kb/s/ time slot | 59.2 kb/s | | GMSK | | MCS 6 = 29.6 kb/s/ time slot 118.4 kb/s 8PSK MCS 7 = 44.8 kb/s/ time slot 179.2 kb/s 8PSK MCS 8 = 54.4 kb/s/ time slot 217.6 kb/s 8PSK MCS 9 = 59.2 kb/s/ time slot 236.8 kb/s 8PSK LTE-FDD device category (Downlink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM Category NB2 20 kbps BPSK/QPSK LTE-FDD device category (Uplink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM | MCS 4 = 17.6 kb/s/ time slot | 70.4 kb/s | | GMSK | | MCS 7 = 44.8 kb/s/ time slot MCS 8 = 54.4 kb/s/ time slot 217.6 kb/s MCS 9 = 59.2 kb/s/ time slot 236.8 kb/s LTE-FDD device category (Downlink) Category M1 300 kbps QPSK/16QAM Category NB2 20 kbps BPSK/QPSK LTE-FDD device category (Uplink) Category M1 300 kbps QPSK/16QAM Ax data rate (peak) Modulation type Max data rate (peak) Modulation type QPSK/16QAM QPSK/QPSK Ax data rate (peak) Modulation type QPSK/16QAM | MCS 5 = 22.4 kb/s/ time slot | 89.6 kb/s | | 8PSK | | MCS 8 = 54.4 kb/s/ time slot MCS 9 = 59.2 kb/s/ time slot 236.8 kb/s 8PSK LTE-FDD device category (Downlink) Category M1 300 kbps QPSK/16QAM Category NB2 20 kbps BPSK/QPSK LTE-FDD device category (Uplink) Category M1 300 kbps QPSK/16QAM Modulation type Max data rate (peak) Modulation type
Modulation type (QPSK/16QAM) QPSK/16QAM | MCS 6 = 29.6 kb/s/ time slot | 118.4 kb/s | | 8PSK | | MCS 9 = 59.2 kb/s/ time slot236.8 kb/s8PSKLTE-FDD device category (Downlink)Max data rate (peak)Modulation typeCategory M1300 kbpsQPSK/16QAMCategory NB220 kbpsBPSK/QPSKLTE-FDD device category (Uplink)Max data rate (peak)Modulation typeCategory M1300 kbpsQPSK/16QAM | MCS 7 = 44.8 kb/s/ time slot | 179.2 kb/s | | 8PSK | | LTE-FDD device category
(Downlink)Max data rate (peak)Modulation typeCategory M1300 kbpsQPSK/16QAMCategory NB220 kbpsBPSK/QPSKLTE-FDD device category
(Uplink)Max data rate (peak)Modulation typeCategory M1300 kbpsQPSK/16QAM | MCS 8 = 54.4 kb/s/ time slot | 217.6 kb/s | | 8PSK | | (Downlink) Category M1 300 kbps QPSK/16QAM Category NB2 20 kbps BPSK/QPSK LTE-FDD device category (Uplink) Category M1 300 kbps QPSK/16QAM QPSK/16QAM Modulation type QPSK/16QAM | MCS 9 = 59.2 kb/s/ time slot | 236.8 kb/s | | 8PSK | | Category NB2 20 kbps BPSK/QPSK LTE-FDD device category (Uplink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM | | Max data rate | (peak) | Modulation type | | LTE-FDD device category (Uplink) Category M1 Max data rate (peak) Modulation type QPSK/16QAM | Category M1 | 300 kbps | | QPSK/16QAM | | (Uplink) Max data rate (peak) Modulation type Category M1 300 kbps QPSK/16QAM | Category NB2 | 20 kbps | | BPSK/QPSK | | | | Max data rate | (peak) | Modulation type | | Category NB2 10.3 kbps BPSK/QPSK | | 300 kbps | | QPSK/16QAM | | | Category NB2 | 10.3 kbps | | BPSK/QPSK | www.simcom.com 68 / 72 # **D. Related Documents** **Table 46: Related Documents** | NO. | Title | Description | |------|---|---| | [1] | SIM7070 Series AT
Command Manual V1.xx | AT Command Manual | | [2] | GSM 07.07 | Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME) | | [3] | GSM 07.10 | Support GSM 07.10 multiplexing protocol | | [4] | GSM 07.05 | Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS) | | [5] | GSM 11.14 | Digital cellular telecommunications system (Phase 2+);
Specification of the SIM Application Toolkit for the Subscriber
Identity Module – Mobile Equipment (SIM – ME) interface | | [6] | GSM 11.11 | Digital cellular telecommunications system (Phase 2+);
Specification of the Subscriber Identity Module – Mobile
Equipment (SIM – ME) interface | | [7] | GSM 03.38 | Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information | | [8] | GSM 11.10 | Digital cellular telecommunications system (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification | | [9] | 3GPP TS 51.010-1 | Digital cellular telecommunications system (Release 5); Mobile Station (MS) conformance specification | | [10] | 3GPP TS 34.124 | Electromagnetic Compatibility (EMC) for mobile terminals and ancillary equipment. | | [11] | 3GPP TS 34.121 | Electromagnetic Compatibility (EMC) for mobile terminals and ancillary equipment. | | [12] | 3GPP TS 34.123-1 | Technical Specification Group Radio Access Network; Terminal conformance specification; Radio transmission and reception (FDD) | | [13] | 3GPP TS 34.123-3 | User Equipment (UE) conformance specification; Part 3: Abstract Test Suites. | | [14] | EN 301 908-02 V2.2.1 | Electromagnetic compatibility and Radio spectrum Matters (ERM); Base Stations (BS) and User Equipment (UE) for IMT-2000. Third Generation cellular networks; Part 2: Harmonized EN for IMT-2000, CDMA Direct Spread (UTRA FDD) (UE) covering essential requirements of article 3.2 of the R&TTE Directive | | [15] | EN 301 489-24 V1.2.1 | Electromagnetic compatibility and Radio Spectrum Matters (ERM); Electromagnetic Compatibility (EMC) standard for radio equipment and services; Part 24: Specific conditions for IMT-2000 CDMA Direct Spread (UTRA) for Mobile and portable (UE) radio and ancillary equipment | | [16] | IEC/EN60950-1(2001) | Safety of information technology equipment (2000) | | [17] | 3GPP TS 51.010-1 | Digital cellular telecommunications system (Release 5); Mobile Station (MS) conformance specification | | [18] | 2002/95/EC | Directive of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous | www.simcom.com 69 / 72 | | | substances in electrical and electronic equipment (RoHS) | |------|---|---| | [19] | Module
secondary-SMT-UGD-V1.
xx | Module secondary SMT Guidelines | | [20] | SIM7070 Series UART
Application Note_V1.xx | This document describes how to use UART interface of SIMCom modules. | | [21] | ETSI EN 301 908-13
(ETSI TS 136521-1
R13.4.0) | IMT cellular networks; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive; Part 13 | | [22] | ANTENNA DESIGN
GUIDELINES FOR
MULTI-ANTENNA
SYSTEM V1 01 | Design notice for multi-antenna. | # E. Terms and Abbreviations **Table 47: Terms and Abbreviations** | Abbreviation | Description | |--------------|---| | ADC | Analog-to-Digital Converter | | ARP | Antenna Reference Point | | BER | Bit Error Rate | | BD | BeiDou | | BTS | Base Transceiver Station | | CS | Coding Scheme | | CSD | Circuit Switched Data | | CTS | Clear to Send | | DAC | Digital-to-Analog Converter | | DRX | Discontinuous Reception | | DSP | Digital Signal Processor | | DTE | Data Terminal Equipment (typically computer, terminal, printer) | | DTR | Data Terminal Ready | | DTX | Discontinuous Transmission | | DAM | Downloadable Application Module | | DPO | Dynamic Power Optimization | | DRX | Discontinuous Reception | | e-DRX | Extended Discontinuous Reception | | EFR | Enhanced Full Rate | | EGSM | Enhanced GSM | | EMC | Electromagnetic Compatibility | | ESD | Electrostatic Discharge | | ETS | European Telecommunication Standard | | EVDO | Evolution Data Only | | FCC | Federal Communications Commission (U.S.) | | | | www.simcom.com 70 / 72 | FD | SIM fix dialing phonebook | |--------|---| | FDMA | Frequency Division Multiple Access | | FR | Full Rate | | GMSK | Gaussian Minimum Shift Keying | | GNSS | Global Navigation Satellite System | | GPRS | General Packet Radio Service | | GPS | Global Positioning System | | GSM | Global Standard for Mobile Communications | | HR | Half Rate | | HSPA | High Speed Packet Access | | I2C | Inter-Integrated Circuit | | IMEI | International Mobile Equipment Identity | | LTE | Long Term Evolution | | MO | Mobile Originated | | MS | Mobile Station (GSM engine), also referred to as TE | | MT | Mobile Terminated | | NMEA | National Marine Electronics Association | | PAP | Password Authentication Protocol | | PBCCH | Packet Switched Broadcast Control Channel | | PCB | Printed Circuit Board | | PCS | Personal Communication System, also referred to as GSM 1900 | | RF | Radio Frequency | | RMS | Root Mean Square (value) | | RTC | Real Time Clock | | SIM | Subscriber Identification Module | | SMS | Short Message Service | | SMPS | Switched-mode power supply | | TDMA | Time Division Multiple Access | | TE | Terminal Equipment, also referred to as DTE | | TX | Transmit Direction | | UART | Universal Asynchronous Receiver & Transmitter | | VSWR | Voltage Standing Wave Ratio | | SM | SIM phonebook | | NC | Not connect | | EDGE | Enhanced data rates for GSM evolution | | HSDPA | High Speed Downlink Packet Access | | HSUPA | High Speed Uplink Packet Access | | ZIF | Zero intermediate frequency | | WCDMA | Wideband Code Division Multiple Access | | VCTCXO | Voltage control temperature-compensated crystal oscillator | | SIM | Universal subscriber identity module | | | | www.simcom.com 71 / 72 | UMTS | Universal mobile telecommunications system | |------|---| | UART | Universal asynchronous receiver transmitter | | PSM | Power saving mode | | LD | SIM last dialing phonebook (list of numbers most recently dialed) | | MC | Mobile Equipment list of unanswered MT calls (missed calls) | | ON | SIM (or ME) own numbers (MSISDNs) list | | RC | Mobile Equipment list of received calls | | SM | SIM phonebook | | NC | Not connect | # F. Safety Caution **Table 48: Safety Caution** | Marks | Requirements | |-------|---| | X | When in a hospital or other health care facility, observe the restrictions about the use of mobiles. Switch the cellular terminal or mobile off, medical equipment may be sensitive and not operate normally due to RF energy
interference. Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. Forgetting to think much of these instructions may impact the flight safety, or offend local legal action, or both. | | | Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard. | | | Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment. | | | Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for hands free operation. Before making a call with a hand-held terminal or mobile, park the vehicle. | | sos | GSM cellular terminals or mobiles operate over radio frequency signals and cellular networks and cannot be guaranteed to connect in all conditions, especially with a mobile fee or an invalid SIM card. While you are in this condition and need emergent help, please remember to use emergency calls. In order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength. Some networks do not allow for emergency call if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may have to deactivate those features before you can make an emergency call. Also, some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile. | www.simcom.com 72 / 72